mdarray
: An
Owning Multidimensional Array Analog of mdspan
Document #: | P1684R1 |
Date: | 2022-03-15 |
Project: | Programming Language C++ Library Evolution |
Reply-to: |
Christian Trott <[email protected]> David Hollman <[email protected]> Mark Hoemmen <[email protected]> Daniel Sunderland <[email protected]> |
[P0009R9] introduced a non-owning
multidimensional array abstraction that has been refined over many
revisions and is expected to be merged into the C++ working draft early
in the C++23 cycle. However, there are many owning use cases where
mdspan
is not ideal. In particular, for use cases with
small, fixed-size dimensions, the non-owning semantics of
mdspan
may represent a significant pessimization,
precluding optimizations that arise from the removal of the non-owning
indirection (such as storing the data in registers).
Without mdarray
, use cases that should be owning are
awkward to express:
P0009 Only:
void make_random_rotation(mdspan<float, 3, 3> output);
void apply_rotation(mdspan<float, 3, 3>, mdspan<float, 3>);
void random_rotate(mdspan<float, dynamic_extent, 3> points) {
float buffer[9] = { };
auto rotation = mdspan<float, 3, 3>(buffer);
(rotation);
make_random_rotationfor(int i = 0; i < points.extent(0); ++i) {
(rotation, subspan(points, i, std::all));
apply_rotation}
}
This Work:
<float, 3, 3> make_random_rotation();
mdarrayvoid apply_rotation(mdarray<float, 3, 3>&, const mdspan<float, 3>&);
void random_rotate(mdspan<float, dynamic_extent, 3> points) {
auto rotation = make_random_rotation();
for(int i = 0; i < points.extent(0); ++i) {
(rotation, subspan(points, i, std::all));
apply_rotation}
}
Particularly for small, fixed-dimension mdspan
use
cases, owning semantics can be a lot more convenient and require a lot
less in the way of interprocedural analysis to optimize.
One major goal of the design for mdarray
is to parallel
the design of mdspan
as much as possible (but no more),
with the goals of reducing cognitive load for users already familiar
with mdspan
and of incorporating the lessons learned from
the half decade of experience on [P0009R9]. This paper (and this section
in particular) assumes the reader has read and is already familiar with
[P0009R9].
In brief, the analogy to mdspan
can be seen in the
declaration of the proposed design for mdarray
:
template<class ElementType,
class Extents,
class LayoutPolicy = layout_right,
class Container = see-below>
class mdarray;
This intentionally parallels the design of mdspan
in
[P0009R9], which has the signature:
template<class ElementType,
class Extents,
class LayoutPolicy = layout_right,
class AccessorPolicy = accessor_basic<ElementType>>
class mdspan;
Note that the original proposal for mdarray
had a
ContainerPolicy
instead of a Container
parameter. We decided that the complexity of a ContainerPolicy is not
actually required for mdarray
. The vast majority of cases
where customization of the AccessorPolicy
is required to
modify the access behavior, are local contextual requirements. For
example one has a loop with write conflicts, and wants an atomic
accessor. However, even with mdarray
existing these
temporary objects need to be views of data, and thus one should create
an mdspan
view with appropriate access behavior from the
mdarray
which owns the data.
mdarray
and mdspan
By design, mdarray
is as similar as possible to
mdspan
, except with container semantics instead of
reference semantics. However, the use of container semantics
necessitates a few differences. The most notable of these is deep
const
ness. Like all reference semantic types in the
standard, mdspan
has shallow const
ness, but
container types in the standard library propagate const
through their access functions. Thus, mdarray
needs
const
and non-const
versions of every
analogous operation in mdspan
that interacts with the
underlying data:
template<class ElementType, class Extents, class LayoutPolicy, class Container>
class mdarray {
/* ... */
// also in mdspan:
using pointer = /* ... */;
// only in mdarray:
using const_pointer = /* ... */;
// also in mdspan:
using reference = /* ... */;
// only in mdarray:
using const_reference = /* ... */;
// analogous to mdspan, except with const_reference return type:
template<class... IndexType>
constexpr const_reference operator[](IndexType...) const;
template<class IndexType, size_t N>
constexpr const_reference operator[](const array<IndexType, N>&) const;
// non-const overloads only in mdarray:
template<class... IndexType>
constexpr reference operator[](IndexType...);
template<class IndexType, size_t N>
constexpr reference operator[](const array<IndexType, N>&);
// also in mdspan, except with const_pointer return type:
constexpr const_pointer data() const noexcept;
// non-const overload only in mdarray:
constexpr pointer data() noexcept;
/* ... */
};
Additionally, mdarray
needs a means of interoperating
with mdspan
in roughly the same way as contiguous
containers interact with span
, or as string
interacts with string_view
. We could do this by adding a
constructor to mdspan
, which would be more consistent with
the analogous features in span
and
string_view
, but in the interest of avoiding modifications
to an in-flight proposal, we propose using a member function of
mdarray
for this functionality for now (tentatively named
view()
, subject to bikeshedding). We are happy to change
this based on design direction from LEWG:
template<class ElementType, class Extents, class LayoutPolicy, class Container>
class mdarray {
/* ... */
// only in mdarray:
using view_type = /* ... */;
using const_view_type = /* ... */;
() noexcept;
view_type view() const noexcept;
const_view_type view
/* ... */
};
As discussed below, accessor_policy
from
mdspan
is replaced by container_policy
in
mdarray
:
template<class ElementType, class Extents, class LayoutPolicy, class ContainerPolicy>
class mdarray {
/* ... */
// only in mdarray:
using container_policy_type = ContainerPolicy;
using container_type = /* ... */;
/* ... */
};
There are several relatively trivial differences between
mdspan
and mdarray
constructors and assignment
operators. Most trivially, mdspan
provides a compatible
mdspan
copy-like constructor and copy-like assignment
operator, with proper constraints and expectations to enforce
compatibility of shape, layout, and size. Since mdarray
has
owning semantics, we also need move-like versions of these:
template<class ElementType, class Extents, class LayoutPolicy, class ContainerPolicy>
class mdarray {
/* ... */
// analogous to mdspan:
template<class ET, class Exts, class LP, class CP>
constexpr mdarray(const mdarray<ET, Exts, LP, CP>&);
template<class ET, class Exts, class LP, class CP>
constexpr mdarray& operator=(const mdarray<ET, Exts, LP, CP>&);
// only in mdarray:
template<class ET, class Exts, class LP, class CP>
constexpr mdarray(mdarray<ET, Exts, LP, CP>&&) noexcept(see-below);
template<class ET, class Exts, class LP, class CP>
constexpr mdarray& operator=(mdarray<ET, Exts, LP, CP>&&) noexcept;
/* ... */
};
(The noexcept
clauses on these constructors and
operators should probably actually derive from noexcept
clauses on the analogous functionality for the element type and policy
types).
Additionally, the analog of the
mdspan(pointer, IndexType...)
constructor for
mdarray
should not take the first argument, since the
mdarray
owns the data and thus should be able to construct
it from sizes:
template<class ElementType, class Extents, class LayoutPolicy, class ContainerPolicy>
class mdarray {
/* ... */
// only in mdarray
template <class... IndexType>
explicit constexpr mdarray(IndexType...);
/* ... */
};
Note that in the completely static extents case, this is ambiguous with the default constructor. For consistency in generic code, the semantics of this constructor should be preferred over those of the default constructor in that case.
By this same logic, we arrive at the mapping_type
constructor analogs:
template<class ElementType, class Extents, class LayoutPolicy, class Container>
class mdarray {
/* ... */
// only in mdarray
explicit constexpr mdarray(const mapping_type&);
/* ... */
};
There is some question as to whether we should also have constructors
that take container_type
instances in addition to indices.
Consistency with standard container adapters like
std::priority_queue
would dictate that we should. Note that
these constructors would copy data over.
template<class ElementType, class Extents, class LayoutPolicy, class Container>
class mdarray {
/* ... */
// only in mdarray
explicit constexpr mdarray(const mapping_type&);
constexpr mdarray(const container_type&, const mapping_type&);
/* ... */
};
Finally, we remmove the constructor that takes an
array<IndexType, N>
of dynamic extents because of the
ambiguity or confusion with a constructor that takes a container
instance in the case where the container
happens to be an
array<IndexType, N>
.
Extents
Design
ReusedAs with mdspan
, the Extents
template
parameter to mdarray
shall be a template instantiation of
std::extents
, as described in [P0009R9]. The concerns addressed by this
aspect of the design are exactly the same in mdarray
and
mdspan
, so using the same form and mechanism seems like the
right thing to do here.
LayoutPolicy
Design ReusedWhile not quite as straightforward, the decision to use the same
design for LayoutPolicy
from mdspan
in
mdarray
is still quite obviously the best choice. The only
piece that’s a bit of a less perfect fit is the
is_contiguous()
and is_always_contiguous()
requirements. While non-contiguous use cases for mdspan
are
quite common (e.g., subspan()
), non-contiguous use cases
for mdarray
are expected to be a bit more arcane.
Nonetheless, reasonable use cases do exist (for instance, padding of the
fast-running dimension in anticipation of a resize operation), and the
reduction in cognitive load due to concept reuse certainly justifies
reusing LayoutPolicy
for mdarray
.
AccessorPolicy
Replaced by Container
By far the most complicated aspect of the design for
mdarray
is the analog of the AccessorPolicy
in
mdspan
. The AccessorPolicy
for
mdspan
is clearly designed with non-owning semantics in
mind–it provides a pointer
type, a reference
type, and a means of converting from a pointer and an offset to a
reference. Beyond the lack of an allocation mechanism (that would be
needed by mdarray
), the AccessorPolicy
requirements address concerns normally addressed by the allocation
mechanism itself. For instance, the C++ named requirements for
Allocator
allow for the provision of the
pointer
type to std::vector
and other
containers. Arguably, consistency between mdarray
and
standard library containers is far more important than with
mdspan
in this respect. Several approaches to addressing
this incongruity are discussed below.
Regardless of the form of the solution, there are several use cases
where we have a clear understanding of how we want them to work. As
alluded to above, perhaps the most important motivating use
case for mdarray
is that of small, fixed-size extents.
Consider a fictitious (not proposed) function,
get-underlying-container, that somehow retrieves the underlying
storage of an mdarray
. For an mdarray
of
entirely fixed sizes, we would expect the default implementation to
return something that is (at the very least) convertible to
array
of the correct size:
auto a = mdarray<int, 3, 3>();
::array<int, 9> data = get-underlying-container(a); std
(Whether or not a reference to the underlying container should be
obtainable is slightly less clear, though we see no reason why this
should not be allowed.) The default for an mdarray
with
variable extents is only slightly less clear, though it should almost
certainly meet the requirements of contiguous container
([container.requirements.general]/13). The default
model for contiguous container of variable size in the standard
library is vector
, so an entirely reasonable outcome would
be to have:
auto a = mdarray<int, 3, dynamic_extent>();
::vector<int> data = get-underlying-container(a); std
Moreover, taking a view of a mdarray
should yield an
analogous mdspan
with consistent semantics (except, of
course, that the latter is non-owning). We provisionally call the method
for obtaining this analog view()
:
template <class T, class Extents, class LayoutPolicy, class ContainerPolicy>
void frobnicate(mdarray<T, Extents, LayoutPolicy, ContainerPolicy> data)
{
auto data_view = data.view();
/* ... */
}
In order for this to work, Container::data()
should be
required to return T*
. That way interoperability with
mdspan
is trivial, since it can simply be created as:
template <class T, class Extents, class LayoutPolicy, class ContainerPolicy>
void frobnicate(mdarray<T, Extents, LayoutPolicy, ContainerPolicy> a)
{
mdspan a_view(a.data(), a.mapping());
/* ... */ }
Perhaps the best analogs for what mdarray
is doing with
respect to allocation and ownership are the container adaptors
([container.adaptors]), since they imbue additional
semantics to what is otherwise an ordinary container. These all take a
Container
template parameter, which defaults to
deque
for stack
and queue
, and to
vector
for priority_queue
. The allocation
concern is thus delegated to the container concept, reducing the
cognitive load associated with the design. While this design approach
overconstrains the template parameter slightly (i.e., not all of the
requirements of the Container
concept are needed by the
container adaptors), the simplicity arising from concept reuse more than
justifies the cost of the extra constraints.
It is difficult to say whether the use of Container
directly, as with the container adaptors, is also the correct approach
for mdarray
. There are pieces of information that may need
to be customized in some very reasonable use cases that are not provided
by the standard container concept. The most important of these is the
ability to produce a semantically consistent AccessorPolicy
when creating a mdspan
that refers to a
mdarray
. (Interoperability between mdspan
and
mdarray
is considered a critical design requirement because
of the nearly complete overlap in the set of algorithms that operate on
them.) For instance, given a Container
instance
c
and an AccessorPolicy
instance
a
, the behavior of a.access(p, n)
should be
consistent with the behavior of c[n]
for a
mdspan
wrapping a
that is a view of a
mdarray
wrapping c
(if p
is
c.begin()
). But because c[n]
is part of the
container requirements and thus may encapsulate any arbitrary mapping
from an offset of c.begin()
to a reference, the only
reasonable means of preserving these semantics for arbitrary container
types is to reference the original container directly in the
corresponding AccessorPolicy
. In other words, the signature
for the view()
method of mdarray
would need to
look something like (ignoring, for the moment, whether the name for the
type of the accessor is specified or implementation-defined):
template<class ElementType,
class Extents,
class LayoutPolicy,
class Container>
struct mdarray {
/* ... */
<
mdspan
ElementType, Extents, LayoutPolicy,<Container>>
container_reference_accessor() const noexcept;
view/* ... */
};
template <class Container>
struct __container_reference_accessor { // not proposed
using pointer = Container*;
/* ... */
template <class Integer>
(pointer p, Integer offset) {
reference accessreturn (*p)[offset];
}
/* ... */
};
But this approach comes at the cost of an additional indirection (one
for the pointer to the container, and one for the container dereference
itself), which is likely unacceptable cost in a facility designed to
target performance-sensitive use cases. The situation for the
offset
requirement (which is used by subspan
)
is potentially even worse for arbitrary non-contiguous containers,
adding up to one indirection per invocation of subspan
.
This is likely unacceptable in many contexts.
Nonetheless, using refinements of the existing Container
concept directly with mdarray
is an incredibly attractive
option because it avoids the introduction of an extra concept, and thus
significantly decreases the cognitive cost of the abstraction. Thus,
direct use of the existing Container
concept hierarchy
should be preferred to other options unless the shortcomings of the
existing concept are so irreconcilable (or so complicated to reconcile)
as to create more cognitive load than is needed for an entirely new
concept.
One straight forward way to resolve the above concerns with arbitrary container types, is to simply restrict what type of containers can be used.
Specifically we would restrict it such that creating an
mdspan
with default_accessor
is straight
forward. Thus we would require:
::is_same_v<decltype(Container::data()),ElementType*> == true std
and
&c[i] == c.data()+i
for all i
in the range of [0,c.size()
).
In the following we discuss two design alternatives.
ContainerPolicy
ConceptDespite the additional cognitive load, there are a few arguments in
favor of using a dedicated concept for the container description of
mdarray
. As is often the case with concept-driven design,
the implementation of mdarray
only needs a relatively small
subset of the interface elements in the Container
concept
hierarchy. This alone is not enough to justify an additional concept
external to the existing hierarchy; however, there are also quite a few
features missing from the existing container concept hierarchy, without
which an efficient mdarray
implementation may be difficult
or impossible. As alluded to above, conversion to an
AccessorPolicy
for the creation of a mdspan
is
one missing piece. (Another, interestingly, is sized construction of the
container mixed with allocator awareness, which is surprisingly lacking
in the current hierarchy somehow.) For these reasons, it is worth
exploring a design based on analogy to the AccessorPolicy
concept rather than on analogy to Container
. If we make
that abstraction owning, we might call it something like
_ContainerLikeThing
(not proposed here; included for
discussion). In that case, a model of the
_ContainerLikeThing
concept that meets the needs of
mdarray
might look something like:
template <class ElementType, class Allocator=std::allocator<ElementType>>
struct vector_container_like_thing // models _ContainerLikeThing
{
public:
using element_type = ElementType;
using container_type = std::vector<ElementType, Allocator>;
using allocator_type = typename container_type::allocator_type;
using pointer = typename container_type::pointer;
using const_pointer = typename container_type::const_pointer;
using reference = typename container_type::reference;
using const_reference = typename container_type::const_reference;
using accessor_policy = std::accessor_basic<element_type>;
using const_accessor_policy = std::accessor_basic<const element_type>;
// analogous to `access` method in `AccessorPolicy`
(ptrdiff_t offset) { return __c[size_t(offset)]; }
reference access(ptrdiff_t offset) const { return __c[size_t(offset)]; }
const_reference access
// Interface for mdspan creation
() { return { }; }
accessor_policy make_accessor_policy() const { return { }; }
const_accessor_policy make_accessor_policytypename pointer data() { return __c.data(); }
typename const_pointer data() const { return __c.data(); }
// Interface for sized construction
static vector_container_policy create(size_t n) {
return vector_container_like_thing{container_type(n, element_type{})};
}
static vector_container_policy create(size_t n, allocator_type const& alloc) {
return vector_container_like_thing{container_type(n, element_type{}, alloc)};
}
container_type __c;};
This approach solves many of the problems associated with using the
Container
concept directly. It is the most flexible and
provides the best compatibility with mdspan
, since the
conversion to analogous AccessorPolicy
is fully
customizable. This comes at the cost of additional cognitive load, but
this can be justified based on the observation that almost half of the
functionality in the above sketch is absent from the container
hierarchy: the make_accessor_policy()
requirement and the
sized, allocator-aware container creation
(create(n, alloc)
) have no analogs in the container concept
hierarchy. Non-allocator-aware creation (create(n)
) is
analogous to sized construction from the sequence container concept, the
data()
method is analogous to begin()
on the
contiguous container concept, and access(n)
is analogous to
operator[]
or at(n)
from the optional sequence
container requirements. Even for these latter pieces of functionality,
though, we are required to combine several different concepts from the
Container
hierarchy. Based on this analysis, we have
decided it is reasonable to pursue designs for this customization point
that diverge from Container
, including ones that use
AccessorPolicy
as a starting point. Given a better design,
we would definitely consider reversing direction on this decision, but
despite significant effort, we were unable to find a design that was
more than an awkward and forced fit for the Container
concept hierarchy.
ContainerPolicy
subsumes AccessorPolicy
The above approach has the significant drawback that the
_ContainerLikeThing
is an owning abstraction fairly similar
to a container that diverges from the Container
hierarchy.
We initially explored this direction because it avoids having to provide
a mdarray
constructor that takes both a
Container
and a ContainerPolicy
, which we felt
was a “design smell.” Another alternative along these lines is to make
the mdarray
itself own the container instance and have the
ContainerPolicy
(name subject to bikeshedding; maybe
ContainerFactory
or ContainerAccessor
is more
appropriate?) be a non-owning abstraction that describes the container
creation and access. While this approach leads to an ugly
mdarray(container_type, mapping_type, ContainerPolicy)
constructor, the analog that constructor affords to the
mdspan(pointer, mapping_type, AccessorPolicy)
constructor
is a reasonable argument in favor of this design despite its quirkiness.
Furthermore, this approach affords the opportunity to explore a
ContainerPolicy
design that subsumes
AccessorPolicy
, thus providing the needed conversion to
AccessorPolicy
for the analogous mdspan
by
simple subsumption. More importantly, this subsumption would
significantly decrease the cognitive load for users already familiar
with mdspan
. A model of ContainerPolicy
for
this sort of approach might look something like:
template <class ElementType, class Allocator=std::allocator<ElementType>>
struct vector_container_policy // models ContainerPolicy (and thus AccessorPolicy)
{
public:
using element_type = ElementType;
using container_type = std::vector<ElementType, Allocator>;
using allocator_type = typename container_type::allocator_type;
using pointer = typename container_type::pointer;
using const_pointer = typename container_type::const_pointer;
using reference = typename container_type::reference;
using const_reference = typename container_type::const_reference;
using offset_policy = vector_container_policy<ElementType, Allocator>
// ContainerPolicy requirements:
(container_type& c, ptrdiff_t i) { return c[size_t(i)]; }
reference access(container_type const& ptrdiff_t i) const { return c[size_t(i)]; }
const_reference access
// ContainerPolicy requirements (interface for sized construction):
(size_t n) {
container_type createreturn container_type(n, element_type{});
}
(size_t n, allocator_type const& alloc) {
container_type createreturn container_type(n, element_type{}, alloc);
}
// AccessorPolicy requirement:
(pointer p, ptrdiff_t i) { return p[i]; }
reference access// For the const analog of AccessorPolicy:
(const_pointer p, ptrdiff_t i) const { return p[i]; }
const_reference access
// AccessorPolicy requirement:
(pointer p, ptrdiff_t i) { return p + i; }
pointer offset// For the const analog of AccessorPolicy:
(const_pointer p, ptrdiff_t i) const { return p + i; }
const_pointer offset
// AccessorPolicy requirement:
* decay(pointer p) { return p; }
element_type// For the const analog of AccessorPolicy:
const element_type* decay(pointer p) const { return p; }
};
The above sketch makes clear the biggest challenge with this
approach: the mismatch in shallow versus deep const
ness in
for an abstractions designed to support mdspan
and
mdarray
, respectively. The ContainerPolicy
concept thus requires additional const
-qualified overloads
of the basis operations. Moreover, while the
ContainerPolicy
itself can be obtained directly from the
corresponding AccessorPolicy
in the case of the
non-const
method for creating the corresponding
mdspan
(provisionally called view()
), the
const
-qualified version needs to adapt the policy, since
the nested types have the wrong names (e.g., const_pointer
should be named pointer
from the perspective of the
mdspan
that the const
-qualified
view()
needs to return). This could be fixed without too
much mess using an adapter (that does not need to be part of the
specification):
template <ContainerPolicy P>
class __const_accessor_policy_adapter { // models AccessorPolicy
public:
using element_type = add_const_t<typename P::element_type>;
using pointer = typename P::const_pointer;
using reference = typename P::const_reference;
using offset_policy = __const_accessor_policy_adapter<typename P::offset_policy>;
(pointer p, ptrdiff_t i) { return acc_.access(p, i); }
reference access(pointer p, ptrdiff_t i) { return acc_.offset(p, i); }
pointer offset* decay(pointer p) { return acc_.decay(p); }
element_type
private:
[[no_unique_address]] add_const_t<P> acc_;
};
Compared to simply using a container
as the argument,
this approach has the benefit of enabling mdarray
to use
containers for which data()[i]
is not giving access to the
same element as container[i]
. However, after more
consideration we believe that the need for supporting such containers as
underlying storage for mdarray
is likely fairly niche.
Furthermore, we believe one could later extent the design of
mdarray
to allow for such ContainerPolicies, even if the
initial design only allows for a restricted set of containers.
22.7.� Class template mdarray
[mdarray]
22.7.�.1 mdarray
overview
[mdarray.overview]
1
mdarray
maps a multidimensional index in its domain to a
reference to an element in its codomain.
2
The domain of an mdarray
object is a
multidimensional index space defined by an extents
.
3
The codomain of an mdarray
object is a set of
elements accessible from a contiguous range of integer indices.
namespace std {
template<class ElementType, class Extents, class LayoutPolicy, class Container =
>
see belowclass mdarray {
public:
using extents_type = Extents;
using layout_type = LayoutPolicy;
using container_type = Container;
using mapping_type = typename layout_type::template mapping<extents_type>;
using element_type = ElementType;
using value_type = element_type;
using size_type = typename Extents::size_type ;
using pointer = typename container_type::pointer;
using reference = typename container_type::reference;
using const_pointer = typename container_type::const_pointer;
using const_reference = typename container_type::const_reference;
// [mdspan.mdspan.ctors], mdspan Constructors
constexpr mdarray() requires(rank_dynamic() != 0) = default;
constexpr mdarray(const mdarray& rhs) = default;
constexpr mdarray(mdarray&& rhs) = default;
template<class... SizeTypes>
requires(rank()>0 || rank_dynamic()==0)
explicit constexpr mdarray(SizeTypes... exts);
constexpr mdarray(const Extents& ext);
constexpr mdarray(const mapping_type& m);
template<class... SizeTypes>
explicit constexpr mdarray(const container_type& c, SizeTypes... exts);
constexpr mdarray(const container_type& c, const extents_type& ext);
constexpr mdarray(const container_type& c, const mapping_type& m);
template<class... SizeTypes>
explicit constexpr mdarray(container_type&& c, SizeTypes... exts);
constexpr mdarray(container_type&& c, const extents_type& ext);
constexpr mdarray(container_type&& c, const mapping_type& m);
template<class... SizeTypes>
explicit constexpr mdarray(initializer_list<T> init, SizeTypes... exts);
constexpr mdarray(initializer_list<T> init, const extents_type& ext);
constexpr mdarray(initializer_list<T> init, const mapping_type& m);
template<class OtherElementType, class OtherExtents,
class OtherLayoutPolicy, class OtherContainer>
explicit(see below)
constexpr mdarray(
const mdarray<OtherElementType, OtherExtents,
>& other);
OtherLayoutPolicy, OtherContainer
template<class Alloc, class... SizeTypes>
requires(uses_allocator_v<container_type, Alloc>)
constexpr mdarray(const Extents& ext, const Alloc& a);
template<class Alloc>
requires(uses_allocator_v<container_type, Alloc>)
constexpr mdarray(const mapping_type& m, const Alloc& a);
template<class Alloc>
requires(uses_allocator_v<container_type, Alloc>)
constexpr mdarray(const container_type& c, const extents_type& ext);
template<class Alloc>
requires(uses_allocator_v<container_type, Alloc>)
constexpr mdarray(const container_type& c, const mapping_type& m);
template<class Alloc>
requires(uses_allocator_v<container_type, Alloc>)
constexpr mdarray(container_type&& c, const extents_type& ext);
template<class Alloc>
requires(uses_allocator_v<container_type, Alloc>)
constexpr mdarray(container_type&& c, const mapping_type& m);
template<class Alloc>
requires(uses_allocator_v<container_type, Alloc>)
constexpr mdarray(initializer_list<T> init, const extents_type& ext);
template<class Alloc>
requires(uses_allocator_v<container_type, Alloc>)
constexpr mdarray(initializer_list<T> init, const mapping_type& m);
template<class OtherElementType, class OtherExtents,
class OtherLayoutPolicy, class OtherContainer,
class Alloc>
explicit(see below)
requires(uses_allocator_v<container_type, Alloc>)
constexpr mdarray(
const mdarray<OtherElementType, OtherExtents,
>& other);
OtherLayoutPolicy, OtherContainer
constexpr mdarray& operator=(const mdarray& rhs) = default;
constexpr mdarray& operator=(mdarray&& rhs) = default;
// [mdspan.mdspan.members], mdspan members
template<class... SizeTypes>
constexpr reference operator[](SizeTypes... indices);
template<class... SizeTypes>
constexpr const_reference operator[](SizeTypes... indices) const;
template<class SizeType, size_t N>
constexpr reference operator[](const array<SizeType, N>& indices);
template<class SizeType, size_t N>
constexpr const_reference operator[](const array<SizeType, N>& indices) const;
static constexpr size_t rank() { return Extents::rank(); }
static constexpr size_t rank_dynamic() { return Extents::rank_dynamic(); }
static constexpr size_type static_extent(size_t r) { return Extents::static_extent(r); }
constexpr const extents_type& extents() const { return map_.extents(); }
constexpr size_type extent(size_t r) const { return extents().extent(r); }
constexpr size_type size() const;
constexpr pointer data() { return ctr\_.data(); }
constexpr const_pointer data() const { return ctr\_.data(); }
constexpr container_type& container() { return ctr\_; }
constexpr const container_type& container() const { return ctr\_; }
constexpr const mapping_type& mapping() const { return map_; }
template<class OtherElementType, class OtherExtents,
class OtherLayoutType, class OtherAccessorType>
operator mdspan ();
static constexpr bool is_always_unique() {
return mapping_type::is_always_unique();
}
static constexpr bool is_always_contiguous() {
return mapping_type::is_always_contiguous();
}
static constexpr bool is_always_strided() {
return mapping_type::is_always_strided();
}
constexpr bool is_unique() const {
return map_.is_unique();
}
constexpr bool is_contiguous() const {
return map_.is_contiguous();
}
constexpr bool is_strided() const {
return map_.is_strided();
}
constexpr size_type stride(size_t r) const {
return map_.stride(r);
}
private:
container_type ctr_;// exposition only
mapping_type map_; };
4
mdarray<ElementType, Extents, LayoutPolicy, Accessor>
is a trivially copyable type if Container
and
LayoutPolicy::mapping_type<Extents>
are trivially
copyable types.
5
ElementType
is required to be a complete object type that
is neither an abstract class type nor an array type. If
Extents
is not a specialization of extents
,
then the program is ill-formed. LayoutPolicy
shall meet the
layout mapping policy requirements. Container
shall meet
the requirements of ContiguousContainer. If
is_same_v<typename Container::value_type, ElementType>
equals false
, then the program is ill-formed.
6
The default type for Container
is
vector<ElementType>
if
Extents::dynamic_rank()>0
is true
.
Otherwise, the default type is array<ElementType,N>
,
where N
is the product of
Extents::static_extent(r)
for r
in the range
of [0, Extents::rank()
).
22.7.�.1 mdarray
Constructors [mdarray.ctors]
template<class... SizeTypes>
requires(rank()>0 || rank_dynamic()==0)
explicit constexpr mdarray(SizeTypes... exts);
1 Constraints:
(1.1)
(is_convertible_v<SizeTypes, size_type> && ...)
is true
,
(1.2)
is_constructible_v<Extents, static_cast<size_type>(SizeTypes)...>
is true
,
(1.3)
is_constructible_v<mapping_type, Extents>
is
true
, and
(1.4)
is_constructible_v<container_type, size_t>
is
true
.
2 Effects:
(2.1)
Direct-non-list-initializes map_
with
Extents(static_cast<size_type>(std::move(exts))...)
,
and
(2.2)
Direct-non-list-initializes ctr_
with
container_type(
map_
.required_span_size())
.
constexpr mdarray(const extents_type& ext);
3 Constraints:
(3.1)
is_constructible_v<mapping_type, const extents_type&>
is true
, and
(3.2)
is_constructible_v<container_type, size_t>
is
true
.
4 Effects:
(4.1)
Direct-non-list-initializes map_
with
ext
, and
(4.2)
Direct-non-list-initializes ctr_
with
container_type(
map_
.required_span_size())
.
constexpr mdarray(const mapping_type& m);
5
Constraints:
is_constructible_v<container_type, size_t>
is
true
.
6 Effects:
(6.1)
Direct-non-list-initializes map_
with
m
, and
(6.2)
Direct-non-list-initializes ctr_
with
container_type(
map_
.required_span_size())
.
template<class... SizeTypes>
explicit constexpr mdarray(const container_type& c, SizeTypes... exts);
7 Constraints:
(7.1)
(is_convertible_v<SizeTypes, size_type> && ...)
is true
,
(7.2)
is_constructible_v<extents_type, static_cast<size_type>(SizeTypes)...>
is true
,
(7.3)
is_constructible_v<mapping_type, extents_type>
is
true
, and
8
Preconditions:
c.size() == mapping_type(extents_type(static_cast<size_type>(std::move(exts))...)).required_span_size()
is true
.
9 Effects:
(9.1)
Direct-non-list-initializes map_
with
extents_type(static_cast<size_type>(std::move(exts))...)
,
and
(9.2)
Direct-non-list-initializes ctr_
with
c
.
constexpr mdarray(const container_type& c, const extents_type& ext);
10
Constraints:
is_constructible_v<mapping_type, const extents_type&>
is true
, and
11
Preconditions:
c.size() == mapping_type(ext).required_span_size()
is
true
.
12 Effects:
(12.1)
Direct-non-list-initializes map_
with
ext
, and
(12.2)
Direct-non-list-initializes ctr_
with
c
.
constexpr mdarray(const container_type& c, const mapping_type& m);
13
Preconditions: c.size() == m.required_span_size()
is true
.
14 Effects:
template<class... SizeTypes>
explicit constexpr mdarray(container_type&& c, SizeTypes... exts);
15 Constraints:
(15.1)
(is_convertible_v<SizeTypes, size_type> && ...)
is true
,
(15.2)
is_constructible_v<extents_type, static_cast<size_type>(SizeTypes)...>
is true
,
(15.3)
is_constructible_v<mapping_type, extents_type>
is
true
, and
16
Preconditions:
c.size() == mapping_type(extents_type(static_cast<size_type>(std::move(exts))...)).required_span_size()
is true
.
17 Effects:
(17.1)
Direct-non-list-initializes map_
with
extents_type(static_cast<size_type>(std::move(exts))...)
,
and
(17.2)
Direct-non-list-initializes ctr_
with
std::move(c)
.
constexpr mdarray(container_type&& c, const extents_type& ext);
18
Constraints:
is_constructible_v<mapping_type, const extents_type&>
is true
, and
18
Preconditions:
c.size() == mapping_type(ext).required_span_size()
is
true
.
19 Effects:
(19.1)
Direct-non-list-initializes map_
with
ext
, and
(19.2)
Direct-non-list-initializes ctr_
with
std::move(c)
.
constexpr mdarray(container_type&& c, const mapping_type& m);
20
Preconditions: c.size() == m.required_span_size()
is true
.
21 Effects:
(21.1)
Direct-non-list-initializes map_
with
m
, and
(22.2)
Direct-non-list-initializes ctr_
with
std::move(c)
.
template<class OtherElementType, class OtherExtents,
class OtherLayoutPolicy, class OtherContainer>
explicit(see below)
constexpr mdarray(const mdarray<OtherElementType, OtherExtents,
>& other); OtherLayoutPolicy, OtherContainer
23 Mandates:
(23.1)
is_constructible_v<Container, const OtherContainer&>
is true
, and
(23.2)
is_constructible_v<extents_type, OtherExtents>
is
true
.
24 Constraints:
(24.1)
is_constructible_v<mapping_type, const OtherLayoutPolicy::template mapping<OtherExtents>&>
is true
, and
(24.2)
is_constructible_v<container_type, OtherContainer>
is
true
.
25 Preconditions:
r
of extents_type
,
static_extent(r) == dynamic_extent || static_extent(r) == other.extent(r)
is true
.26 Effects:
(26.1)
Direct-non-list-initializes ctr_
with
other.ctr_
, and
(26.2)
Direct-non-list-initializes map_
with
other.
map_
.
27
Remarks: The expression inside explicit
is:
!is_convertible_v<const typename OtherLayoutPolicy::mapping_type&, mapping_type> ||
!is_convertible_v<const OtherContainer&, Container>
template<class Alloc>
requires(uses_allocator_v<container_type, Alloc>)
constexpr mdarray(const extents_type& ext, const Alloc& a);
28 Constraints:
(28.1)
is_constructible_v<mapping_type, const extents_type&>
is true
, and
(28.2)
is_constructible_v<container_type, size_t, Alloc>
is
true
.
29 Effects:
(29.1)
Direct-non-list-initializes map_
with
ext
, and
(29.2)
Direct-non-list-initializes ctr_
with
map_
.required_span_size()
as the
first argument and a
as the second argument.
template<class Alloc>
requires(uses_allocator_v<container_type, Alloc>)
constexpr mdarray(const mapping_type& m, const Alloc& a);
30
Constraints:
is_constructible_v<container_type, size_t, Alloc>
is
true
.
31 Effects:
(31.1)
Direct-non-list-initializes map_
with
m
, and
(31.2)
Direct-non-list-initializes ctr_
with
m.required_span_size()
as the first argument and
a
as the second argument.
template<class Alloc>
requires(uses_allocator_v<container_type, Alloc>)
constexpr mdarray(const container_type& c, const extents_type& ext, const Alloc& a);
32 Constraints:
(32.1)
is_constructible_v<mapping_type, const extents_type&>
is true
, and
(32.2)
is_constructible_v<container_type, container_type, Alloc>
is true
.
33
Preconditions:
c.size() == mapping_type(ext).required_span_size()
is
true
.
34 Effects:
(34.1)
Direct-non-list-initializes map_
with
ext
, and
(34.2)
Direct-non-list-initializes ctr_
with c
as the
first argument and a
as the second argument.
template<class Alloc>
requires(uses_allocator_v<container_type, Alloc>)
constexpr mdarray(const container_type& c, const mapping_type& m, const Alloc& a);
35
Constraints:
is_constructible_v<container_type, container_type, Alloc>
is true
.
36
Preconditions: c.size() == m.required_span_size()
is true
.
37 Effects:
(37.1)
Direct-non-list-initializes map_
with
m
, and
(37.2)
Direct-non-list-initializes ctr_
with c
as the
first argument and a
as the second argument.
template<class Alloc>
requires(uses_allocator_v<container_type, Alloc>)
constexpr mdarray(container_type&& c, const extents_type& ext, const Alloc& a);
38 Constraints:
(38.1)
is_constructible_v<mapping_type, const extents_type&>
is true
, and
(38.2)
is_constructible_v<container_type, container_type, Alloc>
is true
.
39
Preconditions:
c.size() == mapping_type(ext).required_span_size()
is
true
.
40 Effects:
(40.1)
Direct-non-list-initializes map_
with
ext
, and
(40.2)
Direct-non-list-initializes ctr_
with
std::move(c)
as the first argument and a
as
the second argument.
template<class Alloc>
requires(uses_allocator_v<container_type, Alloc>)
constexpr mdarray(container_type&& c, const mapping_type& m, const Alloc& a);
41
Constraints:
is_constructible_v<container_type, container_type, Alloc>
is true
.
42
Preconditions: c.size() == m.required_span_size()
is true
.
43 Effects:
(43.1)
Direct-non-list-initializes map_
with
m
, and
(43.2)
Direct-non-list-initializes ctr_
with
std::move(c)
as the first argumnet and a
as
the second argument.
template<class OtherElementType, class OtherExtents,
class OtherLayoutPolicy, class OtherContainer, class Alloc>
explicit(see below)
constexpr mdarray(const mdarray<OtherElementType, OtherExtents,
>& other,
OtherLayoutPolicy, OtherContainerconst Alloc& a);
44 Mandates:
(44.1)
is_constructible_v<Container, OtherContainer, Alloc>
is true
, and
(44.2)
is_constructible_v<extents_type, OtherExtents>
is
true
.
45 Constraints:
(45.1)
is_constructible_v<mapping_type, const OtherLayoutPolicy::template mapping<OtherExtents>&>
is true
, and
(45.2)
is_constructible_v<container_type, OtherContainer, Alloc>
is true
.
46 Preconditions:
r
of extents_type
,
static_extent(r) == dynamic_extent || static_extent(r) == other.extent(r)
is true
.47 Effects:
(47.2)
Direct-non-list-initializes map_
with
other.
map_
, and
(47.1)
Direct-non-list-initializes ctr_
with
other.ctr_
as the first argument and a
as the
second argument.
48
Remarks: The expression inside explicit
is:
!is_convertible_v<const typename OtherLayoutPolicy::mapping_type&, mapping_type> ||
!is_convertible_v<const OtherContainer&, Container>
22.7.�.2 mdarray
members
[mdarray.members]
template<class... SizeTypes>
constexpr reference operator[](SizeTypes... indices);
1 Constraints:
(1.1)
(is_convertible_v<SizeTypes, size_type> && ...)
is true
,
(1.2)
(is_nothrow_constructible_v<size_type, SizeTypes> && ...)
is true
, and
(1.3)
sizeof...(SizeTypes) == rank()
is
true
.
2
Let I
be
static_cast<size_type>(std::move(indices))
.
3
Preconditions: I
is a multidimensional index into
extents()
. [Note: This implies that
map_
(I...) <
map_
.required_span_size()
is true
.— end note];
4
Effects: Equivalent to:
return ctr_[
map_
(I...)];
.
template<class... SizeTypes>
constexpr const_reference operator[](SizeTypes... indices) const;
5 Constraints:
(5.1)
(is_convertible_v<SizeTypes, size_type> && ...)
is true
,
(5.2)
(is_nothrow_constructible_v<size_type, SizeTypes> && ...)
is true
, and
(5.3)
sizeof...(SizeTypes) == rank()
is
true
.
6
Let I
be
static_cast<size_type>(std::move(indices))
.
7
Preconditions: I
is a multidimensional index into
extents()
. [Note: This implies that
map_
(I...) <
map_
.required_span_size()
is true
.— end note];
8
Effects: Equivalent to:
return ctr_[
map_
(I...)];
.
template<class SizeType, size_t N>
constexpr reference operator[](const array<SizeType, N>& indices);
9 Constraints:
(9.1)
is_convertible_v<const SizeType&, size_type>
is
true
, and
(9.2)
is_nothrow_constructible_v<size_type, const SizeType&>
is true
, and
(9.3)
rank() == N
is true
.
10
Effects: Let P
be the parameter pack such that
is_same_v<make_index_sequence<rank()>, index_sequence<P...>>
is true
.
Equivalent to:
return operator[](static_cast<size_type>(indices[P])...);
template<class SizeType, size_t N>
constexpr const_reference operator[](const array<SizeType, N>& indices) const;
11 Constraints:
(11.1)
is_convertible_v<const SizeType&, size_type>
is
true
, and
(11.2)
is_nothrow_constructible_v<size_type, const SizeType&>
is true
, and
(11.3)
rank() == N
is true
.
12
Effects: Let P
be the parameter pack such that
is_same_v<make_index_sequence<rank()>, index_sequence<P...>>
is true
.
Equivalent to:
return operator[](static_cast<size_type>(indices[P])...);
constexpr size_type size() const;
13
Precondition: The size of extents()
is a
representable value of size_type
([basic.fundamental]).
14
Returns:
extents().
fwd-prod-of-extents
(rank())
.
template<class OtherElementType, class OtherExtents,
class OtherLayoutType, class OtherAccessorType>
operator mdspan ();
15
Constraints:
is_assignable_<mdspan<element_type, extents_type, layout_type>, mdspan<OtherElementType, OtherExtents, OtherLayoutType, OtherAccessorType>>
is true
.
16
Returns:
mdspan(data(),
map_
)`