MDSPAN
Document #: | P0009r16 |
Date: | 2022-03-15 |
Project: | Programming Language C++ LEWG |
Reply-to: |
Christian Trott <[email protected]> D.S. Hollman <[email protected]> Damien Lebrun-Grandie <[email protected]> Mark Hoemmen <[email protected]> Daniel Sunderland <[email protected]> H. Carter Edwards <[email protected]> Bryce Adelstein Lelbach <[email protected]> Mauro Bianco <[email protected]> Ben Sander <[email protected]> Athanasios Iliopoulos <> John Michopoulos <> Nevin Liber <[email protected]> |
Special thanks to Tomasz Kaminski for invaluable help in preparing this paper for wording review.
mdspan::rank[_dynamic]
returns
size_t
fix comparison operator for layout_stride
to take
strides into account.
fix layout_stride
mapping
required_span_size
Consistently use “<
expr>
is true
” instead of
“<
expr>
is true”.
In the layout mappings’ operator()
Effects
clauses, use only index_sequence
and fix syntax error in
stride(P())
.
Replace various unary folds with binary to handle
extents<>
.
Consistently use Extents::rank()
in layout mapping
wording.
Typo in mdspan::mapping_type
:
template mapping_type
should be
template mapping
.
mdspan
’s array
constructor calls
Extents
’s array
constructor.
Clarify the value of static_stride
for
submdspan
’s result.
Significant editorial changes based on LWG small-group review
tuple<size_t, size_t>
no confusion what extent a given argument is associated with
enables easier writing of certain types of generic code e.g.:
template<class mds1_t, class mds2_t>
auto alloc_gemm_result(mds1_t mdspan1, mds2_t mdspan2) {
using return_t = mdspan<double,
< mds1_t::extents_type::static_extent<0>,
Extents::extents_type::static_extent<1>>;
mds2_tdouble* ptr = new double[mdspan1.extent(0)*mdspan2.extent(1)];
return return_t(ptr, mdspan1.extent(0), mdspan2.extent(1));
}
std::span
extents
converting constructor conditionally
explicit, for cases where dynamic extents are turned into static
extentsdefault_accessor
depend on
convertibility of element_type(*)[]
instead of
pointer
to prevent derived class to base class
assignmentextents
being not implicitly convertiblemdspan
converting constructor conditionally
explicit, for cases where any of the exposition only members or the
template parameters are only explicitly convertibletuple
instead of pair
for subslice
arguments in submdspan
.mdspan::unique_size
layout_stride
constructor to be flexible with
integral types of strides arrayextents
and mdspan
constructors
accept either rank_dynamic
or rank
integer
arguments (or an array
of that size)shared_ptr
as
pointer
layout_left
to
layout_right
and vice versalayout_left
,
layout_right
, and layout_stride
to each
otherLEWG reviewed P0009r12 together with P2299r3 on 2021-06-08.
LEWG Poll Approve the direction of P2299R3 and merge it into P0009.
SF | F | N | A | SA |
---|---|---|---|---|
12 | 6 | 0 | 1 | 0 |
Attendance: 25; Number of authors: 1 [presumably for P2299, as P0009 coauthors were also attending]; Author’s Position: SF.
dextents
aliasmdspan
alias and renamed
basic_mdspan
to mdspan
(which is now a class
type, not an alias). This undoes a change introduced in P0009r6. P2299r3
explains the rationale. Existing code using the mdspan
alias will need to change by replacing the list of extents template
arguments with a single extents
type.mdspan
deduction guideslayout_type
alias
to layout mapping requirements and to layout_left
,
layout_right
, and layout_stride
noexcept
from
mdspan
required_span_size
for rank-0 mdspanlayout_stride::required_span_size
for mdspans with
at least one extent being zerooperator[]
in mdspan
for
multidimensional array access, and add explanation to Discussion
sectionspan
in the mdspan
wording, since mdspan
does not necessarily require a
backing span
(because pointer
need not be
ElementType*
)layout_stride
mdspan
from pointer
and extents
static_extent
default_accessor
(when
the pointers to elements are convertible) for things like
default_accessor<double>
to
default_accessor<const double>
ptrdiff_t
to
size_t
and index_type
to
size_type
, for consistency with span
and the
rest of the standard library`IndexType
to SizeType
or
SizeTypes
(depending if it is a single type or a parameter
pack)basic_mdspan
trivially
default constructiblelayout_*
types, made operator()
and
stride()
constexprlayout_stride
, made assignment operators and
required_span_size()
constexpr to match the other
layout_*
typessubspan
to submdspan
, as this only
applies to mdspan
submdspan()
constexpris_strided
all_type
to full_extent_t
and
all
to full_extent
accessor_basic
to
default_accessor
decay(p)
member function as it
was an artifact from an earlier version of this proposal when
basic_mdspan
had a span()
member function that
returned a std::span
span()
from [mdspan.basic.members] description
as .span()
was removed from an earlier version of this
proposalmdspan_subspan
expo only type; use
basic_mdspan<
see below>
insteadspan
requires reference to C++20 working
draftstd::experimental::fundamentals_v3
P0009r5 was not taken up at 2018-03-Jacksonville meeting. Related LEWG review of P0900 at 2018-03-Jacksonville meeting
LEWG Poll We want the ability to customize the access to elements of span (ability to restrict, etc):
<T, N, Accessor=...> span
SF | F | N | A | SA |
---|---|---|---|---|
1 | 1 | 1 | 2 | 8 |
LEWG Poll We want the customization of
basic_mdspan
to be two concepts Mapper
and
Accessor
(akin to Allocator
design).
<T, Extents, Mapper, Accessor>
basic_mdspan<T, N...> mdspan
SF | F | N | A | SA |
---|---|---|---|---|
3 | 4 | 5 | 1 | 0 |
LEWG Poll: We want the customization of
basic_mdspan
to be an arbitrary (and potentially
user-extensible) list of properties.
<T, Extents, Properties...> basic_mdspan
SF | F | N | A | SA |
---|---|---|---|---|
1 | 2 | 2 | 6 | 2 |
Changes from P0009r5 due to related LEWG reviews:
mdspan
to basic_mdspan
.mdspan
alias to basic_mdspan
.LEWG review of P0009r4 at 2017-11-Albuquerque meeting
LEWG Poll: We should be able to index with
span<int type[N]>
(in addition to array).
SF | F | N | A | SA |
---|---|---|---|---|
2 | 11 | 1 | 1 | 0 |
Against comment - there is not a proven needs for this feature.
LEWG Poll: We should be able to index with 1d
mdspan
.
SF | F | N | A | SA |
---|---|---|---|---|
0 | 8 | 7 | 0 | 0 |
LEWG Poll: We should put the requirement on “rank() <= N” back to “rank()==N”.
Unanimous consent
LEWG Poll: With the editorial changes from small group, plus the above polls, forward this to LWG for Fundamentals v3.
Unanimous consent
Changes from P0009r4:
rank()==sizeof...(indices)
.LEWG review at 2017-03-Kona meeting
LEWG review of P0546r1 at 2017-03-Kona meeting
LEWG Poll: Should we have a single template that covers both single and multi-dimensional spans?
SF | F | N | A | SA |
---|---|---|---|---|
1 | 6 | 2 | 6 | 3 |
Changes from P0009r3:
mdspan
, multidimensional span, to align with
span
.span
.LEWG did not like the name array_ref
, and suggested the
following alternatives: - sci_span
-
numeric_span
- multidimensional_span
-
multidim_span
- mdspan
- md_span
- vla_span
- multispan
-
multi_span
LEWG Poll: Are member begin()
/end()
still good?
SF | F | N | A | SA |
---|---|---|---|---|
0 | 2 | 4 | 3 | 1 |
LEWG Poll: Want this proposal to provide range-producing
functions outside array_ref
?
SF | F | N | A | SA |
---|---|---|---|---|
0 | 1 | 3 | 2 | 3 |
LEWG Poll: Want a separate proposal to explore iteration design space?
SF | F | N | A | SA |
---|---|---|---|---|
9 | 1 | 0 | 0 | 0 |
Changes from P0009r2:
element_type
, reference
, etc).array_ref<T[N]>
in addition to
array_ref<extents<N>>
.LEWG review at 2016-02-Jacksonville.
Changes from P0009r1:
LEWG Poll: What should this feature be called?
Name | # |
---|---|
view
|
5 |
span
|
9 |
array_ref
|
6 |
slice
|
6 |
array_view
|
6 |
ref
|
0 |
array_span
|
7 |
basic_span
|
1 |
object_span
|
3 |
field
|
0 |
LEWG Poll: Do we want 0-length static extents?
SF | F | N | A | SA |
---|---|---|---|---|
3 | 4 | 2 | 3 | 0 |
LEWG POLL: Do we want the language to support syntaxes like
X[3][][][5]
?
Syntax | # |
---|---|
view<int[3][0][][5], property1>
|
12 |
view<int, dimension<3, 0, dynamic_extent, 5>,
property1>
|
4 |
view<int[3][0][dynamic_extent][5], property1>
|
5 |
view<int, 3, 0, dynamic_extent, 5, property1>
|
4 |
view<int, 3, 0, dynamic_extent, 5,
properties<property1>>
|
2 |
view<arr<int, 3, 0, dynamic_extent, 5>,
property1>
|
4 |
view<int[3][0][][5], properties<property1>>
|
9 |
LEWG POLL: Do we want the variadic property list in template
args (either raw or in properties<>
)? Note there is
no precedence for this in the library.
SF | F | N | A | SA |
---|---|---|---|---|
3 | 6 | 3 | 0 | 0 |
LEWG POLL: Do we want the per-view bounds-checking knob?
SF | F | N | A | SA |
---|---|---|---|---|
3 | 4 | 1 | 2 | 1 |
Changes from P0009r0:
view
to array_ref
.view<int[][][]>::layout
should be named.is_regular
(possibly to is_affine
)
to avoid overloading the term with the Regular
concept.operator()
, take integral types by value.Original non-owning multidimensional array reference
(view
) paper with motivation, specification, and
examples.
Related LEWG review of P0546r1 at 2017-11-Albuquerque meeting
LEWG Poll: span
should specify the dynamic extent
as the element type of the first template parameter rather than the
(current) second template parameter
SF | F | N | A | SA |
---|---|---|---|---|
5 | 3 | 2 | 2 | 0 |
LEWG Poll: span
should support the addition of
access properties variadic template parameters
SF | F | N | A | SA |
---|---|---|---|---|
0 | 10 | 1 | 5 | 0 |
Authors agreed to bring a separate paper ([[P0900r0]]) discussing how the variadic properties will work.
This paper proposes adding to the C++ Standard Library a
multidimensional array view, mdspan
, along with classes,
class templates, and constants for describing and creating
multidimensional array views. It also proposes adding the
submdspan
function that “slices” (returns an
mdspan
that views a subset of) an existing mdspan`.
The mdspan
class template can represent arbitrary mixes
of compile-time or run-time extents. Its element type can be any
complete object type that is neither an abstract class type nor an array
type. It has two customization opportunities for users: the layout
mapping and the accessor. The layout mapping specifies the
formula, and properties of the formula, for mapping a multidimensional
index to an element of the array. The accessor governs how elements are
read and written.
A multidimensional array view views a multidimensional
array, just as a span
views a one-dimensional
array
or vector
.
A multidimensional array of rank maps from a tuple of indices to a single offset index. Each of the indices in the tuple is in a bounded range whose inclusive lower bound is zero, and whose nonnegative exclusive upper bound is that index’s extent. The array thus has extents. The offset index ranges over a subset of a bounded contiguous index range whose lower bound is zero, and whose upper bound is the product of the extents.
More formally, a multidimensional array of rank maps from its domain, a multidimensional index space of rank , to its codomain, a set of objects accessible from a contiguous range of integer indices. A multidimensional index space of rank is the Cartesian product of half-open integer intervals, where the for , …, are the array’s extents. A multidimensional index is a element of a multidimensional index space.
Multidimensional arrays are fundamental concepts in many fields, including graphics, mathematics, statistics, engineering, and the sciences. Many programming languages thus come with multidimensional array data structures either as a core language feature, or as a tightly integrated standard library. Example languages include Ada, ANSI Common Lisp, APL, C#, Fortran, Julia, Matlab, Mathematica, Pascal, Python (via NumPy), and Visual Basic. The original version of the Fortran language for the IBM 704 featured arrays with one, two, or three extents (Backus 1956, pp. 10-11).
Multidimensional arrays have long been useful for representing large amounts of data, describing points in physical space, or expressing approximations of functions. They are a natural way to represent mathematical objects like matrices and tensors. This makes multidimensional arrays a critical data structure for many computations at the heart of modern machine learning. In fact, one of the predominant machine learning frameworks is called TensorFlow.
C++ currently has the following approaches that could be used to represent multidimensional arrays:
“native” arrays where all the extents are compile-time constants,
like int[3][4][5]
;
pointer-of-pointers(-of-pointers…), like int***
, set
up as a data structure to view multidimensional data;
arrays-of-arrays(-of-arrays…) data structures, like
vector<vector<array<int, N>>>
;
or
gslice
, which selects a subset of indices of a
valarray
and can be used to impose a multidimensional array
layout on the valarray
, in a way analogous to
layout_stride
.
If a multidimensional array has any extents that are not known at compile time, Approach (1) does not work.
Approach (2) does not suffice as a stand-alone data structure,
because a pointer-of-pointers does not carry along the array’s run-time
extents. Users thus end up building some subset of mdspan
’s
functionality to represent a multidimensional array view. Every run-time
extent other than the rightmost requires a separate memory allocation
for an array of pointers. A pointer-of-pointers also loses information
about any dimensions known at compile time. Users cannot arbitrarily mix
compile-time and run-time extents.
Approach (3) can mix vector
and array
to
represent extents known at run time resp. compile time. However, any use
of vector
at any position other than the outermost results
in the data structure no longer having a contiguous memory allocation
(or a subset thereof) for the elements. This makes the data structure
incompatible with many libraries that expect a subset of a contiguous
allocation. Also, every run-time extent other than the rightmost
requires a separate memory allocation for an array of arrays. In
addition, each element access requires reading multiple memory locations
(“pointer chasing”). Finally, the inlining depth for an element access
is proportional to the array’s rank.
Approach (4) is meant for addressing many elements of a
valarray
all at once. Even though valarray
itself is a one-dimensional array, one can use gslice
to
make the valarray
represent multidimensional data. Giving a
gslice
to valarray::operator[]
returns
something that references a subset of elements of the original
valarray
. However, the result (a gslice_array
in the nonconst case, some type that might be an expression template in
the const case) is not guaranteed to have an operator[]
.
Thus, it’s not a view, whereas our proposed submdspan
function always takes and returns a view. In the const case, the result
might even be a (deep) copy of the input. Finally, gslice
offers no efficient way to address a single element. The
gslice
constructor takes strides and lengths as
valarray
s and is meant for array-based computation.
Accessing a single element requires accessing the memory of three
valarray
s.
The fundamental reason to allow expressing extents at compile time is performance. Knowing an extent at compile time enables many compiler optimizations, such as unrolling and precomputing of offsets. These can significantly improve the generated code. Not storing extents at run time may help conserve registers and stack space.
In many fields, some extents are naturally known at compile time. For many physics and engineering algorithms, some extents are dictated by fundamental properties of the physical world or the discretization scheme. For example, the position of a particle in space requires a rank-3 array, since physical space has three dimensions. At the same time, other extents are only known at run time, such as the number of particles in a simulation. A natural data structure for storing a list of particles would thus be a rank-2 array, where the one run-time extent is the number of particles and the one compile-time extent is three. In graphics, some of the most fundamental objects are square matrices with 2, 3, or 4 rows and columns. The number of matrices with which one would like to compute might only be known at run time. This would make a rank-3 array with two compile-time extents a natural data structure for the matrices.
Our mdspan
class template permits custom layouts. Our
proposal comes with three memory layouts:
layout_right
: C or C++ style, row major, where the
rightmost index gives stride-1 access to the underlying memory;
layout_left
: Fortran or Matlab style, column major,
where the leftmost index gives stride-1 access to the underlying
memory;
layout_stride
: a generalization of the two layouts
above, which stores a separate stride (possibly not one) for each
extent.
“Custom” layouts besides these could include space-filling curves or “tiled” layouts.
An important reason we allow different layouts is language interoperability. For example, C++ and Fortran have different “native” layouts. Python’s NumPy arrays have a configurable layout, to provide compatibility with both languages.
Control of the layout can also be used to write code that performs well on different computer architectures when only changing a template argument. Consider the following implementation of a parallel dense matrix-vector product.
using layout = /* see-below */;
::mdspan<double, std::extents<N, M>, layout> A = ...;
std::mdspan<double, std::extents<N>> y = ...;
std::mdspan<double, std::extents<M>> x = ...;
std
::ranges::iota_view range{0, N};
std
::for_each(std::execution::par_unseq,
std::ranges::begin(range), std::ranges::end(range),
std[=](int i) {
double sum = 0.0;
for(int j = 0; j < M; ++j) {
+= A[i, j] * x[j];
sum }
[i] = sum;
y});
On conventional CPU architectures, this code performs well with
layout = layout_right
, the native C++ row-major layout.
However, when offloading the for_each
to NVIDIA GPUs (which
NVIDIA’s nvc++
compiler can do),
layout = layout_left
(Fortran’s column-major layout)
performs much better, since it enables coalesced data access on the
matrix A
.
However, it is not enough to have just C++ and Fortran memory mappings. For instance, one way to compute tensor products is to decompose them into many matrix-matrix multiplications. The resulting decomposition may involve matrices with non-unit strides in both extents. This means that they have neither a row-major nor a column-major layout.
More complex layouts can improve performance significantly for some algorithms. For instance, tiling (a “matrix of small matrices” layout) can improve data locality for many computations relevant to linear algebra and the discretization of partial differential equations. Tiled layouts can also improve vectorization. For example, Intel’s Math Kernel Library introduced the Vectorized Compact Routines. These provide “batched” matrix operations that increase available parallelism by operating on many matrices at once. The Vectorized Compact Routines accept matrices in an “interleaved” layout that optimizes vectorized memory access.
Another design goal for our custom layouts is to permit nonunique
layouts. A nonunique layout lets multiple index tuples refer to
the same element. This can save memory for data structures that have
natural symmetry. For example, if A
is a symmetric matrix,
then A[i, j]
and A[j, i]
refer to the same
element, so the element can and should only be stored once.
Custom accessors can provide information to the compiler, or permit
the injection of special ways of doing data access. Most hardware today
has more ways to access data than simple reads and writes. For example,
some instructions affect caching behavior, by making loads and/or stores
nontemporal (not cached at some level) or even noncoherent. Other
instructions implement atomic access. This is why several of us proposed
atomic_ref
, as the heart of an “atomic accessor” for
mdspan
. C’s restrict
qualifier conveys whether
an array is assumed never to alias another array in some context. The
volatile
keyword is yet another qualifier which limits
compiler optimizations around data access. Custom mdspan
accessors can apply restrict
(if the C++ implementation
supports this extension) or volatile
to array accesses.
Custom accessors also address concerns relating to heterogeneous memory. Standard C++ does not have the idea of “memory spaces that normal code cannot access,” but many extensions to C++ do have this idea. For example, a custom accessor could convey accessibility by CPU or GPU threads, so that the compiler would prevent users from accessing GPU memory while running on the CPU, or vice versa. Multiple memory spaces occur in programming models other than for GPUs. For example, “partitioned global address space” models have a “global shared memory” that requires special operations to access. C++ libraries like Kokkos expose access to such memory using an analog of a custom accessor. Other accessors could expose an array interface to a persistent storage device that is not directly byte addressable. We do not propose such accessors here, but this is a customization point third-party libraries could directly use, and is available for any future extensions of the C++ standard for supporting heterogeneous memory.
For a discussion of the idea of accessors and several examples, please see (Keryell and Falcou 2016).
A critical feature of this proposal is submdspan
, the
subspan or “slicing” function that returns a view of a subset of an
existing mdspan
. The result may have any rank up to and
including the rank of the input. All of the aforementioned languages
with multidimensional array support provide subspan capabilities.
Subspans are important because they enable code reuse. For example, the
inner loop in the dense matrix-vector product described above actually
represents a dot product – an inner product of two vectors. If
one already has a function for such an inner product, then a natural
implementation would simply reuse that function. The LAPACK linear
algebra library depends on subspan reuse for the performance of its
one-sided “blocked” matrix factorizations (Cholesky, LU, and QR). These
factorizations reuse textbook non-blocked algorithms by calling them on
groups of contiguous columns at a time. This lets LAPACK spend as much
time in dense matrix-matrix multiply (or algorithms with analogous
performance) as possible.
Factoring views from containers generally makes sense. For example,
one often sees functions that take vector
by reference when
they only need to access the vector
’s elements or call
.size()
on it. This is one reason for span
.
Some of us have proposed a multidimensional array container,
mdarray
P1684, but we have
focused on mdspan
because we consider views more
fundamental.
Many fields that compute with multidimensional arrays rely heavily on shared-memory parallel programming, where multiple processing units (threads, vector units, etc.) access different elements of the same array in parallel. Memory allocation and deallocation are “synchronization points” for parallel processing units, and thus hinder parallelization. This makes just viewing a multidimensional array, rather than managing its ownership, the most fundamental way for parallel computations to express how they access an array.
It is often necessary to view previously allocated memory as a multidimensional array. An important special case is when C++ code is calling or being called from another programming language, such as C, Fortran, or Python. This use case matters enough to Python that its C API defines a Buffer Protocol for viewing multidimensional arrays across languages. Language interoperability is key to the success of the various Python-based data analysis frameworks built up around NumPy.
We welcome multiple-parameter operator[]
as the
preferred multidimensional array access operator. P1161R3,
now part of C++20, prepared the way for this by deprecating comma
expressions inside operator[]
invocations. P2128R6,
which proposed changing operator[]
to accept multiple
parameters, was approved at the October 2021 WG21 Plenary meeting.
Please refer to P2128 for an extensive discussion.
Many existing libraries use the function call operator()
for multidimensional array access, with operator[]
available for rank-1 (single-dimensional) mdspan
. P2128
gives examples. It’s straightforward to adapt these libraries to
transition to mdspan
. For example, a subclass or wrapper of
mdspan
can provide an operator()
that simply
forwards to mdspan::operator[]
. The subclass or wrapper can
then deprecate operator()
to help developers find and
change all the code that uses it.
A reference implementation of this proposal under BSD license is available at: mdspan. This implementation is also available on godbolt for experimentation: godbolt.
J. W. Backus et al. “Programmer’s Reference Manual: Fortran Automatic Coding System for the IBM 704.” Applied Science Division and Programming Research Department, International Business Machines Corporation, Oct. 15, 1956. Available online (last accessed Oct. 10, 2021).
D. Hollman, C. Trott, M. Hoemmen, and D. Sunderland.
“mdarray
: An Owning Multidimensional Array Analog of
mdspan
.” P1684r0, May 28, 2019. Available
online (last accessed Oct. 10, 2021).
R. Keryell and J. Falcou. “Accessors: A C++ standard library class to qualify data accesses.” P0367r0, May 29, 2016. Available online (last accessed Oct. 10, 2021).
The proposed changes are relative to the working draft of the standard as of N4842.
The � character is used to denote a placeholder section number, table number, or paragraph number which the editor shall determine.
Add the header <mdspan>
to the “C++ library
headers” table in [headers] in a place that respects the table’s
current alphabetic order.
Add the header <mdspan>
to the “Containers library
summary” table in [containers.general] below the listing for
<span>
.
The � character is used to denote a placeholder section number which the editor shall determine.
In [version.syn], add:
#define __cpp_lib_mdspan YYYYMML // also in <mdspan>
1 Adjust the placeholder value as needed so as to denote this proposal’s date of adoption.
Make the following changes to 22.7.1 [views.general],
2
The header <span>
defines the view span. The header
<mdspan>
defines the class template
mdspan
and other facilities for interacting
with these multidimensional views.
Add the following subclauses to the end of the [views] subclause (after
span
):
22.7.� Header <mdspan>
synopsis
[mdspan.syn]
namespace std {
// [mdspan.extents], class template extents
template<size_t... Extents>
class extents;
template<size_t Rank>
using dextents = see below;
// [mdspan.layout], Layout mapping policies
class layout_left;
class layout_right;
class layout_stride;
// [mdspan.accessor.default]
template<class ElementType>
class default_accessor;
// [mdspan.mdspan], class template mdspan
template<class ElementType, class Extents, class LayoutPolicy = layout_right,
class AccessorPolicy = default_accessor<ElementType>>
class mdspan;
// [mdspan.submdspan]
template<class ElementType, class Extents, class LayoutPolicy,
class AccessorPolicy, class... SliceSpecifiers>
constexpr auto submdspan(
const mdspan<ElementType, Extents, LayoutPolicy, AccessorPolicy>&,
...) -> see below;
SliceSpecifiers
// tag supporting submdspan
struct full_extent_t { explicit full_extent_t() = default; };
inline constexpr full_extent_t full_extent{};
}
22.7.� Overview [mdspan.terms]
1 A multidimensional index space is a Cartesian product of integer intervals. Each interval can be represented by a half-open range [Li, Ui), where Li and Ui are the lower and upper bounds of the ith dimension. The rank of a multidimensional index space is the number of intervals it represents. The size of a multidimensional index space is the product of Ui − Li for each dimension i if its rank is greater than 0, and 1 otherwise.
2
A pack of integers idx
is a multidimensional index
in a multidimensional index space S (or representation thereof) if
both of following are true:
(2.1)
sizeof...(idx)
is equal to rank of S, and
(2.2) For
all i in the range [0,rank),
the ith
value of idx
is an integer in the interval [Li, Ui)
of S.
3 An integer r is a rank index of an index space S if r is in the range [0, rank ).
22.7.� Class template extents
[mdspan.extents]
22.7.�.1 Overview [mdspan.extents.overview]
1
The class template extents
represents a multidimensional
index space of rank equal to sizeof...(Extents)
. In section
22.7, extents
will be used synonymously with
multidimensional index space.
namespace std {
template<size_t... Extents>
class extents {
public:
using size_type = size_t;
using rank_type = size_t;
// [mdspan.extents.obs], Observers of the domain multidimensional index space
static constexpr rank_type rank() noexcept { return sizeof...(Extents); }
static constexpr rank_type rank_dynamic() noexcept { return dynamic-index(rank()); }
static constexpr size_type static_extent(rank_type) noexcept;
constexpr size_type extent(rank_type) const noexcept;
// [mdspan.extents.ctors], Constructors
constexpr extents() noexcept = default;
template<size_t... OtherExtents>
explicit(see below)
constexpr extents(const extents<OtherExtents...>&) noexcept;
template<class... SizeTypes>
explicit constexpr extents(SizeTypes...) noexcept;
template<class SizeType, size_t N>
explicit(N != rank_dynamic())
constexpr extents(const array<SizeType, N>&) noexcept;
// [mdspan.extents.cmp], extents comparison operators
template<size_t... OtherExtents>
friend constexpr bool operator==(const extents&, const extents<OtherExtents...>&) noexcept;
// [mdspan.extents.helpers], exposition only helpers
constexpr size_t fwd-prod-of-extents(rank_type) const noexcept; // exposition only
constexpr size_t rev-prod-of-extents(rank_type) const noexcept; // exposition only
private:
static constexpr rank_type dynamic-index(rank_type) noexcept; // exposition only
static constexpr rank_type dynamic-index-inv(rank_type) noexcept; // exposition only
<size_type, rank_dynamic()> dynamic-extents{}; // exposition only
array};
template <class... Integrals>
explicit extents(Integrals...)
-> see below;
}
2
Each specialization of extents
models regular
and is trivially copyable.
3
Let Er be
the rth
element of Extents
. Er is a
dynamic extent if it is equal to dynamic_extent
,
otherwise Er is a static
extent. Let Dr be the value
of
dynamic-extents
[
dynamic-index
(
r)]
if Er is a
dynamic extent, otherwise Er.
4
The rth
interval of the multidimensional index space represented by an
extents
object is [0, Dr).
22.7.�.2 Exposition-only helpers [mdspan.extents.helpers]
static constexpr rank_type dynamic-index(rank_type i) noexcept; // exposition only
1
Precondition: i <= rank()
is
true
.
2 Returns: Number of Er with r < i for which Er is a dynamic extent.
static constexpr rank_type dynamic-index-inv(rank_type i) noexcept; // exposition only
3
Precondition: i < rank_dynamic()
is
true
.
4
Returns: Minimum value of r such that
dynamic-index
(
r+1) == i+1
is
true
.
constexpr size_t fwd-prod-of-extents(rank_type i) const noexcept; // exposition only
5
Precondition: i <= rank()
is
true
.
6
Returns: If i > 0
is true
, the
product of extent(k)
for all k
in the range
[0, i
), otherwise 1
.
constexpr size_t rev-prod-of-extents(rank_type i) const noexcept; // exposition only
7
Precondition: i < rank()
is
true
.
8
Returns: If i+1 < rank()
is true
,
the product of extent(k)
for all k
in the
range [ i
, e.rank()
), otherwise 1
.
22.7.�.3 Constructors [mdspan.extents.ctors]
template<size_t... OtherExtents>
explicit((((Extents!=dynamic_extent) && (OtherExtents==dynamic_extent)) || ... ))
constexpr extents(const extents<OtherExtents...>& other) noexcept;
1 Constraints:
(1.1)
sizeof...(OtherExtents) == rank()
is
true
.
(1.2)
((OtherExtents == dynamic_extent || Extents == dynamic_extent || OtherExtents == Extents) && ...)
is true
.
2
Preconditions: other.extent(r)
equals Er for each
r for which Er is a static
extent.
3
Postconditions: *this == other
is
true
.
template<class... SizeTypes>
explicit constexpr extents(SizeTypes... exts) noexcept;
4 Constraints:
(4.1)
(is_convertible_v<SizeTypes, size_type> && ...)
is true
, and
(4.2)
(is_nothrow_constructible_v<size_type, SizeTypes> && ...)
is true
, and
(4.3)
sizeof...(SizeTypes) == rank_dynamic() || sizeof...(SizeTypes) == rank()
is true
. [Note: One can construct
extents
from just dynamic extents, which are all the values
getting stored, or from all the extents with a precondition. — end
note]
5
Let exts_arr
be
array<size_type, sizeof...(SizeTypes)>{static_cast<size_type>(std::move(exts))...}
6
Preconditions: If
sizeof...(SizeTypes) != rank_dynamic()
is
true
, exts_arr[r]
equals Er for each
r for which Er is a static
extent.
7
Postconditions: *this == extents(exts_arr)
is
true
.
template<class SizeType, size_t N>
explicit(N != rank_dynamic())
constexpr extents(const array<SizeType, N>& exts) noexcept;
8 Constraints:
(8.1)
is_convertible_v<const SizeType&, size_type>
is
true
, and
(8.2)
is_nothrow_constructible_v<size_type, const SizeType&>
is true
, and
(8.3)
N==rank_dynamic() || N==rank()
is
true
.
9
Preconditions: If N != rank_dynamic()
is
true
, exts[r]
equals Er for each
r for which Er is a static
extent.
10 Effects:
(10.1) If
N
equals dynamic_rank()
, for all d in the range [0, rank_dynamic()
), direct-non-list-initializes
dynamic-extent
[d]
with
exts[d]
.
(10.2)
Otherwise, for all d in the
range [0,
rank_dynamic()
),
direct-non-list-initializes
dynamic-extent
[d]
with
exts[
dynamic-index-inv
(d)]
.
template <class... Integrals>
explicit extents(Integrals...) -> see below;
11
Constraints:
(is_convertible_v<Integrals, size_type> && ...)
is true
.
12
Remarks: The deduced type is
dextents<sizeof...(Integrals)>
.
22.7.�.4 Observers of the multidimensional index space [mdspan.extents.obs]
static constexpr size_type static_extent(rank_type i) const noexcept;
1
Preconditions: i < rank()
is
true
.
2 Returns: Ei.
constexpr size_type extent(rank_type i) const noexcept;
3
Preconditions: i < rank()
is
true
.
4 Returns: Di.
22.7.�.5 extents
comparison operators
[mdspan.extents.cmp]
template<size_t... OtherExtents>
friend constexpr bool operator==(const extents& lhs,
const extents<OtherExtents...>& rhs) noexcept;
1
Returns: true if lhs.rank()==rhs.rank()
is
true
and lhs.extents(r)==rhs.extents(r)
is
true
for every rank index r
of
rhs
, otherwise false
.
22.7.�.6 Template alias dextents
[mdspan.extents.dextents]
template <size_t Rank>
using dextents = see below;
1
Result: A type E
that is a specialization of
extents
such that
E::rank() == Rank && E::rank() == E::rank_dynamic()
is true
.
22.7.� Layout mapping policy [mdspan.layout]
1 In subclause 22.7.�.1 and subclause 22.7.�.2
(1.1)
M
denotes a layout mapping class.
(1.2)
m
denotes a (possibly const) value of type
M
.
(1.3)
i
and j
are packs of (possibly const) integers
which are multidimensional indices in m.extents()
([mdspan.terms]). [Note: The type of each element of
i
and j
can be a different integer type. —
end note]
(1.4)
r
is a (possibly const) rank index of
typename M::extents_type
.
(1.5)
dr is a
pack of (possibly const) integers for which sizeof...(
dr) == M::extents_type::rank()
is true
, the r-th
element is equal to 1
, and all other elements are equal to
0
.
2
In subclauses from [mdspan.layout.reqmts] to [mdspan.layout.stride] let
is-mapping-of
be the variable template defined as
follows
template<class Layout, class Mapping>
constexpr bool is-mapping-of =
<typename Layout::template mapping<typename Mapping::extents_type>, Mapping>; is_same_v
22.7.�.1 Layout mapping requirements [mdspan.layout.reqmts]
1
A type M
meets the layout mapping requirements
if:
(1.1)
M
meets the requirements of
Cpp17CopyConstructible, Cpp17CopyAssignable, and
Cpp17EqualityComparable,
(1.2)
is_nothrow_move_constructible_v<M>
is
true
,
(1.3)
is_nothrow_move_assignable_v<M>
is true
,
and
(1.4) the following types and expressions are well-formed and have the specified semantics.
typename M::extents_type
2
Result: A type which is a specialization of
extents
.
typename M::size_type
3
Result: typename M::extents_type::size_type
.
typename M::layout_type
4
Result: A type MP
which meets the layout mapping
policy requirements ([mdspan.layoutpolicy.reqmts]) and for which
is-mapping-of
<MP, M>
is
true
.
.extents() m
5
Result: const typename M::extents_type&
(i...) m
6
Result: typename M::size_type
7
Returns: A value less then
numeric_limits<typename M::size_type>::max() - 1
.
(i...) == m(static_cast<typename M::size_type>(i)...) m
8
Result: bool
9
Value: true
.required_span_size() m
10
Result: typename M::size_type
11
Returns: If the multidimensional index space
m.extents()
has size 0,
then 0
, else 1
plus the maximum value of
m(i...)
for all i
.
.is_unique() m
12
Result: bool
13
Returns: true
only if for every i
and
j
where (i != j || ...)
is true
,
m(i...) != m(j...)
is true
. [Note: A
mapping may return false
even if the above condition is
met. For certain layouts it may not be feasible to determine efficiently
whether the layout is unique.— end note]
.is_contiguous() m
14
Result: bool
15
Returns: true
only if for all k in the range [0, m.required_span_size()
) there exists an i
such that
m(i...)
equals k.
[Note: A mapping may return false
even if the above
condition is met. For certain layouts it may not be feasible to
determine efficiently whether the layout is contiguous.— end
note]
.is_strided() m
16
Result: bool
17
Returns: true
only if for every rank index r of m.extents()
there
exists an integer sr such that,
for all i
where (i+
dr)
is a multidimensional index in m.extents()
([mdspan.terms]), m((i+
dr)...) - m(i...)
equals sr.
[Note: This implies that for a strided layout
m(
i0, ..., ik) = m(
0, ..., 0)
+ i0 * s0 + ... + ik * sk.
— end note] [Note: A mapping may return false
even if the above condition is met. For certain layouts it may not be
feasible to determine efficiently whether the layout is strided.— end
note]
.stride(r) m
18
Preconditions: m.is_strided()
is
true
.
19
Result: typename M::size_type
20
Returns: sr as defined in
m.is_strided()
above.
::is_always_unique() M
21
Result: A constant expression ([expr.const]) of type
bool
.
22
Returns: true
only if m.is_unique()
is true
for all objects m
of type
M
. [Note: A mapping may return false
even if the above condition is met. For certain layout mappings it may
not be feasible to determine whether every instance is unique.— end
note]
::is_always_contiguous() M
23
Result: A constant expression ([expr.const]) of type
bool
.
24
Returns: true
only if
m.is_contiguous()
is true
for all objects
m
of type M
. [Note: A mapping may
return false
even if the above condition is met. For
certain layout mappings it may not be feasible to determine whether
every instance is contiguous.— end note]
::is_always_strided() M
25
Result: A constant expression ([expr.const]) of type
bool
.
26
Returns: true
only if m.is_strided()
is true
for all objects m
of type
M
. [Note: A mapping may return false
even if the above condition is met. For certain layout mappings it may
not be feasible to determine whether every instance is strided.— end
note]
22.7.�.2 Layout policy requirements [mdspan.layoutpolicy.reqmts]
1
A type MP
meets the layout mapping policy
requirements if for a type E
that is a specialization of
extents
, MP::template mapping<E>
is
valid and denotes a type X
that meets the layout mapping
requirements ([mdspan.layout.reqmts]), and for which
typename X::layout_type
denotes MP
and
typename X::extents_type
denotes E
.
22.7.�.3 Class template layout_left
[mdspan.layout.left]
1
layout_left
provides a layout mapping where the left-most
extent is stride one and strides increase left-to-right as the product
of extents.
namespace std {
struct layout_left {
template<class Extents>
class mapping {
public:
using extents_type = Extents;
using size_type = typename extents_type::size_type;
using layout_type = layout_left;
// [mdspan.layout.left.ctors], layout_left Mapping Constructors
constexpr mapping() noexcept = default;
constexpr mapping(const mapping&) noexcept = default;
constexpr mapping(const extents_type&) noexcept;
template<class OtherExtents>
explicit(!is_convertible_v<OtherExtents, extents_type>)
constexpr mapping(const mapping<OtherExtents>&) noexcept;
template<class LayoutRightMapping>
explicit(see below)
constexpr mapping(const LayoutRightMapping&) noexcept;
template<class LayoutStrideMapping>
explicit(extents_type::rank() > 0) constexpr mapping(
const LayoutStrideMapping& other);
constexpr mapping& operator=(const mapping&) noexcept = default;
// [mdspan.layout.left.obs], layout_left Mapping Observers
constexpr const extents_type& extents() const noexcept { return extents_; }
constexpr size_type required_span_size() const noexcept;
template<class... Indices>
constexpr size_type operator()(Indices...) const noexcept;
static constexpr bool is_always_unique() noexcept { return true; }
static constexpr bool is_always_contiguous() noexcept { return true; }
static constexpr bool is_always_strided() noexcept { return true; }
constexpr bool is_unique() const noexcept { return true; }
constexpr bool is_contiguous() const noexcept { return true; }
constexpr bool is_strided() const noexcept { return true; }
constexpr size_type stride(size_t) const noexcept;
template<class OtherExtents>
friend constexpr bool operator==(const mapping&, const mapping<OtherExtents>&) noexcept;
private:
{}; // exposition only
extents_type extents_};
};
}
2
layout_left
meets the requirements of layout mapping
policy.
3
layout_left
is a trivially copyable type.
layout_left::mapping<E>
is a trivially copyable type
for each E
that is a specialization of
extents
.
4
If Extents
is not a specialization of extents
,
then the program is ill-formed.
22.7.�.3.1 layout_left
Mapping Constructors
[mdspan.layout.left.ctors]
constexpr mapping(const extents_type& e) noexcept;
1
Preconditions: The size of the multidimensional index space
e
is a representable value of size_type
([basic.fundamental]).
2
Effects: Direct-non-list-initializes extents_
with e
.
template<class OtherExtents>
explicit(!is_convertible_v<OtherExtents, extents_type>)
constexpr mapping(const mapping<OtherExtents>& other) noexcept;
3
Constraints:
is_constructible_v<extents_type, OtherExtents>
is
true
.
4
Effects: Direct-non-list-initializes extents_
with other.extents()
.
template<class LayoutRightMapping>
explicit(!is_convertible_v<typename LayoutRightMapping::extents_type, extents_type>)
constexpr mapping(const LayoutRightMapping& other) noexcept;
5 Constraints:
(5.1)
is-mapping-of
<layout_right, LayoutRightMapping>
is true
,
(5.2)
extents_type::rank() <= 1
is true
,
and
(5.3)
is_constructible_v<extents_type, typename LayoutRightMapping::extents_type>
is true
.
6
Effects: Direct-non-list-initializes extents_
with other.extents()
.
template<class LayoutStrideMapping>
explicit(extents_type::rank() > 0) constexpr mapping(
const LayoutStrideMapping& other);
7 Constraints:
(7.1)
is-mapping-of
<layout_stride, LayoutStrideMapping>
is true
,
(7.2)
is_constructible_v<extents_type, typename LayoutRightMapping::extents_type>
is true
.
8
Preconditions: If extents_type::rank() > 0
then
for all r
in the range [0,
extents_type::rank()
),
other.stride(r)
equals
extents().
fwd-prod-of-extents
(r)
.
9
Effects: Direct-non-list-initializes extents_
with other.extents()
.
22.7.�.3.1 layout_left
Mapping Observers
[mdspan.layout.left.obs]
constexpr size_type required_span_size() const noexcept;
1
Returns:
extents().
fwd-prod-of-extents
(extents_type::rank())
.
template<class... Indices>
constexpr size_type operator()(Indices... i) const noexcept;
2 Constraints:
(2.1)
sizeof...(Indices) == extents_type::rank()
is
true
,
(2.2)
(is_convertible_v<Indices, size_type> && ...)
is true
, and
(2.3)
(is_nothrow_constructible_v<size_type, Indices> && ...)
is true
.
3
Preconditions: static_cast<size_type>(i)
is
a multidimensional index in extents_
([mdspan.terms]).
4
Effects: Let P
be the parameter pack such that
is_same_v<make_index_sequence<sizeof...(Indices)>, index_sequence<P...>>
is true
.
Equivalent to:
return ((static_cast<size_type>(i)*stride(P)) + ... + 0);
constexpr size_type stride(size_t i) const;
5
Constraints: extents_type::rank() > 0
is
true
.
6
Preconditions: i < extents_type::rank()
is
true
.
7
Returns:
extents().
fwd-prod-of-extents
(i)
.
template<class OtherExtents>
friend constexpr bool operator==(const mapping& x, const mapping<OtherExtents>& y) noexcept;
8
Constraints:
extents_type::rank() == OtherExtents::rank()
is
true
.
9
Effects: Equivalent to:
return x.extents() == y.extents();
22.7.�.4 Class template layout_right
[mdspan.layout.right]
1
layout_right
provides a layout mapping where the right-most
extent is stride one and strides increase right-to-left as the product
of extents.
namespace std {
struct layout_right {
template<class Extents>
class mapping {
public:
using extents_type = Extents;
using size_type = typename extents_type::size_type;
using layout_type = layout_right;
// [mdspan.layout.right.ctors], layout_right Mapping Constructors
constexpr mapping() noexcept = default;
constexpr mapping(const mapping&) noexcept = default;
constexpr mapping(const extents_type&) noexcept;
template<class OtherExtents>
explicit(!is_convertible_v<OtherExtents, extents_type>)
constexpr mapping(const mapping<OtherExtents>&) noexcept;
template<class LayoutLeftMapping>
explicit(see below)
constexpr mapping(const LayoutLeftMapping&) noexcept;
template<class LayoutStrideMapping>
explicit(extents_type::rank() > 0) constexpr mapping(
const LayoutStrideMappping& other) noexcept;
constexpr mapping& operator=(const mapping&) noexcept = default;
// [mdspan.layout.right.obs], layout_right Mapping Observers
constexpr const extents_type& extents() const noexcept { return extents_; }
constexpr size_type required_span_size() const noexcept;
template<class... Indices>
constexpr size_type operator()(Indices...) const noexcept;
static constexpr bool is_always_unique() noexcept { return true; }
static constexpr bool is_always_contiguous() noexcept { return true; }
static constexpr bool is_always_strided() noexcept { return true; }
constexpr bool is_unique() const noexcept { return true; }
constexpr bool is_contiguous() const noexcept { return true; }
constexpr bool is_strided() const noexcept { return true; }
constexpr size_type stride(size_t) const noexcept;
template<class OtherExtents>
friend constexpr bool operator==(const mapping&, const mapping<OtherExtents>&) noexcept;
private:
{}; // exposition only
extents_type extents_};
};
}
2
layout_right
meets the requirements of layout mapping
policy.
3
layout_right
is a trivially copyable type.
layout_right::mapping<E>
is a trivially copyable type
for each E
that is a specialization of
extents
.
4
If Extents
is not a specialization of extents
,
then the program is ill-formed.
22.7.�.4.1 layout_right
Mapping Constructors
[mdspan.layout.right.ctors]
constexpr mapping(const extents_type& e) noexcept;
1
Preconditions: The size of the multidimensional index space
e
is a representable value of size_type
([basic.fundamental]).
2
Effects: Direct-non-list-initializes extents_
with e
.
template<class OtherExtents>
explicit(!is_convertible_v<OtherExtents, extents_type>)
constexpr mapping(const mapping<OtherExtents>& other) noexcept;
3
Constraints:
is_constructible_v<extents_type, OtherExtents>
is
true
.
4
Effects: Direct-non-list-initializes extents_
with other.extents()
.
template<class LayoutLeftMapping>
explicit(!is_convertible_v<typename LayoutLeftMapping::extents_type, extents_type>)
constexpr mapping(const LayoutLeftMapping& other) noexcept;
5 Constraints:
(5.1)
is-mapping-of
<layout_left, LayoutLeftMapping>
is true
,
(5.2)
extents_type::rank() <= 1
is true
,
and
(5.3)
is_constructible_v<extents_type, typename LayoutLeftMapping::extents_type>
is true
.
6
Effects: Direct-non-list-initializes extents_
with other.extents()
.
template<class LayoutStrideMapping>
explicit(extents_type::rank() > 0) constexpr mapping(
const LayoutStrideMapping& other) noexcept;
7 Constraints:
(7.1)
is-mapping-of
<layout_stride, LayoutStrideMapping>
is true
,
(7.2)
is_constructible_v<extents_type, typename LayoutStrideMapping::extents_type>
is true
.
8
Preconditions: If extents_type::rank() > 0
then
for all r
in the range [0,
extents_type::rank()
),
other.stride(r)
equals
extents().
rev-prod-of-extents
(r+1)
.
9
Effects: Direct-non-list-initializes extents_
with other.extents()
.
22.7.�.4.2 layout_right
Mapping Observers
[mdspan.layout.right.obs]
() const noexcept; size_type required_span_size
1
Returns:
extents().
fwd-prod-of-extents
(extents_type::rank())
template<class... Indices>
constexpr size_type operator()(Indices... i) const noexcept;
2 Constraints:
(2.1)
sizeof...(Indices) == extents_type::rank()
is
true
, and
(2.2)
(is_convertible_v<Indices, size_type> && ...)
is true
.
(2.3)
(is_nothrow_constructlible_v<size_type, Indices> && ...)
is true
.
3
Preconditions: static_cast<size_type>(i)
is
a multidimensional index in extents_
([mdspan.terms]).
4
Effects: Let P
be the parameter pack such that
is_same_v<make_index_sequence<sizeof...(Indices)>, index_sequence<P...>>
is true
.
Equivalent to:
return ((static_cast<size_type>(i)*stride(P)) + ... + 0);
constexpr size_type stride(size_t i) const noexcept;
5
Constraints: extents_type::rank() > 0
is
true
.
6
Preconditions: i < extents_type::rank()
is
true
.
7
Returns:
extents().
rev-prod-of-extents
(i+1)
template<class OtherExtents>
friend constexpr bool operator==(const mapping& x, const mapping<OtherExtents>& y) noexcept;
8
Constraints:
extents_type::rank() == OtherExtents::rank()
is
true
.
9
Effects: Equivalent to:
return x.extents() == y.extents();
22.7.�.5 Class template layout_stride
[mdspan.layout.stride]
1
layout_stride
provides a layout mapping where the strides
are user defined.
namespace std {
struct layout_stride {
template<class Extents>
class mapping {
public:
using extents_type = Extents;
using size_type = typename extents_type::size_type;
using layout_type = layout_stride;
// [mdspan.layout.stride.ctors], layout_stride Mapping Constructors
constexpr mapping() noexcept = default;
constexpr mapping(const mapping&) noexcept = default;
template<class SizeType, size_t N>
constexpr mapping(const extents_type&,
const array<SizeType, N>&) noexcept;
template<class StridedLayoutMapping>
explicit(see below)
constexpr mapping(const StridedLayoutMapping&) noexcept;
constexpr mapping& operator=(const mapping&) noexcept = default;
// [mdspan.layout.stride.obs], layout_stride Mapping Observers
constexpr const extents_type& extents() const noexcept { return extents_; }
constexpr array<size_type, extents_type::rank()> strides() const noexcept
{ return strides_; }
constexpr size_type required_span_size() const noexcept;
template<class... Indices>
constexpr size_type operator()(Indices...) const noexcept ;
static constexpr bool is_always_unique() noexcept { return true; }
static constexpr bool is_always_contiguous() noexcept { return false; }
static constexpr bool is_always_strided() noexcept { return true; }
constexpr bool is_unique() const noexcept { return true; }
constexpr bool is_contiguous() const noexcept;
constexpr bool is_strided() const noexcept { return true; }
constexpr size_type stride(size_t) const noexcept;
template<class OtherMapping>
friend constexpr bool operator==(const mapping&, const OtherMapping&) noexcept;
private:
{}; // exposition only
extents_type extents_<size_type, extents_type::rank()> strides_{}; // exposition only
array};
};
}
2
layout_stride
meets the requirements of layout mapping
policy.
3
layout_stride
is a trivially copyable type.
layout_stride::mapping<E>
is a trivially copyable
type for each E
that is a specialization of
extents
.
4
If Extents
is not a specialization of extents
,
then the program is ill-formed.
22.7.�.5.1 layout_stride
Exposition-only helpers
[mdspan.layout.stride.expo]
5
Let REQUIRED-SPAN-SIZE
(e, strides)
be:
(5.1)
1, if e.rank()==0
is
true
, otherwise
(5.2)
0, if size of the multidimensional
index space e
is 0,
otherwise
(5.3)
1 plus the sum of products of
(e.extent(r) - 1)
and strides[r]
for all
r
in the range [0,
e.rank()
).
6
Let
OFFSET
(m)be
m(z…)for a pack of integers
z, that is a multidimensional index into
m.extents()and each element of
zequals
0`.
22.7.�.5.2 layout_stride
Mapping Constructors
[mdspan.layout.stride.ctors]
template<class SizeType, size_t N>
constexpr mapping(const extents_type& e, array<SizeType, N> s) noexcept;
1
Let P be a permutation of the
integers 0, ...,
extents_type::rank()-1
and let pi be the ith
element of P.
2 Constraints:
(2.1)
is_convertible_v<const SizeType&, size_type>
is
true
,
(2.2)
is_nothrow_constructible_v<size_type, const SizeType&>
is true
, and
(2.3)
N == extents_type::rank()
is true
.
3 Preconditions:
(3.1)
REQUIRED-SPAN-SIZE
(e, s)
is a
representable value of size_type
([basic.fundamental]).
(3.1)s[i] > 0
is true
for all i
in the range [0, extents_type::rank()
).
(3.2) If
extents_type::rank()
is greater than zero, then there
exists a permutation P such
that s[
pi
] >= s[
pi − 1
] * e.extent(
pi − 1
)
is true
for all i in the range [1, extents_type::rank()
). [Note: This condition guarantess
that is_unique()
is true
. — end
note]
4
Effects: Direct-non-list-initializes extents_
with e
, and for all d in the range [0, rank()
), direct-non-list-initializes
strides_
[d]
with
s[d]
.
template<class StridedLayoutMapping>
explicit(see below)
constexpr mapping(const StridedLayoutMapping& other) noexcept;
5 Constraints:
(5.1)
is_constructible_v<extents_type, StridedLayoutMapping::extents_type>
is true
.
(5.2)
StridedLayoutMapping::is_always_unique()
is
true
.
(5.3)
StridedLayoutMapping::is_always_strided()
is
true
.
(5.4)
is_same_v<typename StridedLayoutMapping::extents_type, decltype(other.extents())>
is true
.
(5.5) if
extents_type::rank()>0
then
is_same_v<decltype(other.stride(0)), typename StridedLayoutMapping::size_type>
is true
.
6 Precondition:
(6.1)
StridedLayoutMapping
meets the layout mapping
requirements,
(6.2)
other.required_span_size()
is a representable value of
size_type
([basic.fundamental]), and
(6.3)
OFFSET
(other) == 0
is
true
.
7
Postcondition: *this == other
is
true
.
8
Remarks: The condition in the explicit
is:
!(is_convertible_v<typename StridedLayoutMapping::extents_type, extents_type> && (
<layout_left, LayoutStrideMapping> ||
is-mapping-of<layout_right, LayoutStrideMapping> ||
is-mapping-of<layout_stride, LayoutStrideMapping>)) is-mapping-of
22.7.�.5.2 layout_stride
Mapping Observers
[mdspan.layout.stride.obs]
constexpr size_type required_span_size() const noexcept;
1
Returns:
REQUIRED-SPAN-SIZE
(extents(),
strides_
)
.
template<class... Indices>
constexpr size_type operator()(Indices... i) const noexcept;
2 Constraints:
(2.1)
sizeof...(Indices) == extents_type::rank()
is
true
, and
(2.2)
(is_convertible_v<Indices, size_type> && ...)
is true
.
(2.3)
(is_nothrow_constructible_v<size_type, Indices> && ...)
is true
.
3
Preconditions: static_cast<size_type>(i)
is
a multidimensional index in extents_
([mdspan.terms]).
4
Effects: Let P
be the parameter pack such that
is_same_v<make_index_sequence<sizeof...(Indices)>, index_sequence<P...>>
is true
.
Equivalent to:
return ((static_cast<size_type>(i)*stride(P)) + ... + 0);
constexpr bool is_contiguous() const noexcept;
5
Let P be a permutation of the
integers 0, ...,
extents_type::rank()-1
and let pi be the ith
element of P.
6Returns:
(6.1)
true
if extents_type::ranks()
is
zero.
(6.2)
Otherwise, true
if there is a permutation P such that stride(
p0 )
equals 1
, and stride(
pi
)
equals stride(
pi − 1
) * extents().extent(
pi − 1
)
for i in the
range [1,
extents_type::rank()
).
(6.3)
Otherwise, false
.
template<class OtherMapping>
friend constexpr bool operator==(const mapping& x, const OtherMapping& y) noexcept;
7
Constraints:
extents_type::rank() == OtherMapping::extents_type::rank()
is true
, and OtherMapping::is_always_strided()
is true
.
8
Preconditions: OtherMapping
meets layout mapping
requirements.
9
Returns: If x.extents() == y.extents()
is
true
, OFFSET
(y) == 0
is
true
, and each of x.stride(r) == y.stride(r)
is true
for r
in the range of [0, x.extents.rank()
), true
. Otherwise,
false
.
22.7.� Accessor Policy [mdspan.accessor]
1 An accessor policy defines types and operations by which a set of objects are accessed from a subset of a contiguous range of integer indices.
2 In subclause 22.7.�.1,
(2.1)
A
denotes an accessor policy.
(2.2)
a
denotes an object of type A
.
(2.3)
p
denotes an object of type
A::pointer
.
(2.4)
n
, i
and j
each denote a
size_t
value.
22.7.�.1 Accessor policy requirements [mdspan.accessor.reqmts]
1
[p
, n
) is an accessible range for
a
if for each i
in the range [0,n
) a.access(p, i)
is well
defined.
2
A type A
meets the accessor policy requirements if
(2.1)
A
meets the requirements of
Cpp17CopyConstructible, and
Cpp17CopyAssignable
(2.2)
is_nothrow_move_constructible_v<A>
is
true
(2.3)
is_nothrow_move_assignable_v<A>
is true
,
and
(2.4) the following types and expressions are well-formed and have the specified semantics.
typename A::element_type
3 Result: A type that is a complete object type that is not an abstract class type.
typename A::pointer
4
Result: A type that meets the requirements of
Cpp17DefaultConstructible, Cpp17CopyConstructible, and
Cpp17CopyAssignable and for which
is_nothrow_move_constructible_v<A::pointer>
is
true
and
is_nothrow_move_assignable_v<A::pointer>
is
true
.
5
[Note: The type of pointer
need not be
element_type*
. — end note]
typename A::reference
6
Result: A type for which
is_convertible_v<A::reference, A::element_type>
is
true
, and if is_const_v<A::element_type>
is false
then
is_assignable_v<A::element_type&, A::reference>
is true
.
7
[Note: The type of reference
need not be
element_type&
. — end note]
typename A::offset_policy
8
Result: A type O
such that:
(8.1)
O
meets the accessor policy requirements.
(8.2)
constructible_from<O, A>
is modeled.
(8.3)
is_same_v<typename O::element_type, typename A::element_type>
is true
.access(p, i) a
9
Result: A::reference
9
Returns: An object which provides access to the
i
-th element in the range of elements that starts at
p
.
.offset(p, i) a
10
Result: A::offset_policy::pointer
11
Returns: p_sub
such that for a_sub
being A::offset_policy(a)
, and an integer n
such that [p
,
n
) is the accessible range
of a
:
(11.1)
[p_sub
,
n-i
) is the accessible
range of a_sub
, and
(11.2)
a_sub.access(p_sub, j)
provides acces to the same element
as a.access(p, i+j)
, for every j
in the range
[0
, n-i
).
22.7.�.2 Class template default_accessor
[mdspan.accessor.default]
namespace std {
template<class ElementType>
struct default_accessor {
using offset_policy = default_accessor;
using element_type = ElementType;
using reference = ElementType&;
using pointer = ElementType*;
constexpr default_accessor() noexcept = default;
template<class OtherElementType>
constexpr default_accessor(default_accessor<OtherElementType>) noexcept {}
constexpr typename offset_policy::pointer
(pointer p, size_t i) const noexcept;
offset
constexpr reference access(pointer p, size_t i) const noexcept;
};
}
1
default_accessor
meets the requirements of accessor
policy.
2
ElementType
is required to be a complete object type that
is neither an abstract class type nor an array type.
3
Each specialization of default_accessor
is a trivially
copyable type.
4
For a pointer
p
and size_type
n
, [p
,
n
) is an accessible range
for an instance of default_accessor
if and only if [p
, p+n
) is a valid range.
22.7.�.3 Class template default_accessor
members
[mdspan.accessor.members]
template<class OtherElementType>
constexpr default_accessor(default_accessor<OtherElementType>) noexcept {}
1 Constraints:
is_convertible_v<typename default_accessor<OtherElementType>::element_type(*)[], element_type(*)[]>
is true
.constexpr typename offset_policy::pointer
(pointer p, size_t i) const noexcept; offset
2
Preconditions: p + i
is dereferenceable.
3
Returns: p + i
.
constexpr reference access(pointer p, size_t i) const noexcept;
4
Preconditions: p + i
is dereferenceable.
5
Returns: p[i]
.
22.7.� Class template mdspan
[mdspan.mdspan]
22.7.�.1 mdspan
overview
[mdspan.mdspan.overview]
1
mdspan
maps a multidimensional index in its domain to a
reference to an element in its codomain.
2
The domain of an mdspan
object is a
multidimensional index space defined by an extents
.
3
The codomain of an mdspan
object is a set of
elements accessible from a contiguous range of integer indices.
namespace std {
template<class ElementType, class Extents, class LayoutPolicy, class AccessorPolicy>
class mdspan {
public:
using extents_type = Extents;
using layout_type = LayoutPolicy;
using accessor_type = AccessorPolicy;
using mapping_type = typename layout_type::template mapping<extents_type>;
using element_type = ElementType;
using value_type = remove_cv_t<element_type>;
using size_type = typename extents_type::size_type ;
using pointer = typename accessor_type::pointer;
using reference = typename accessor_type::reference;
// [mdspan.mdspan.ctors], mdspan Constructors
constexpr mdspan() requires(rank_dynamic() != 0) = default;
constexpr mdspan(const mdspan& rhs) = default;
constexpr mdspan(mdspan&& rhs) = default;
template<class... SizeTypes>
explicit constexpr mdspan(pointer ptr, SizeTypes... exts);
template<class SizeType, size_t N>
explicit(N != rank_dynamic())
constexpr mdspan(pointer p, const array<SizeType, N>& exts);
constexpr mdspan(pointer p, const extents_type& ext);
constexpr mdspan(pointer p, const mapping_type& m);
constexpr mdspan(pointer p, const mapping_type& m, const accessor_type& a);
template<class OtherElementType, class OtherExtents,
class OtherLayoutPolicy, class OtherAccessorPolicy>
explicit(see below)
constexpr mdspan(
const mdspan<OtherElementType, OtherExtents,
>& other);
OtherLayoutPolicy, OtherAccessorPolicy
constexpr mdspan& operator=(const mdspan& rhs) = default;
constexpr mdspan& operator=(mdspan&& rhs) = default;
// [mdspan.mdspan.members], mdspan members
template<class... SizeTypes>
constexpr reference operator[](SizeTypes... indices) const;
template<class SizeType, size_t N>
constexpr reference operator[](const array<SizeType, N>& indices) const;
constexpr const accessor_type& accessor() const { return acc_; }
static constexpr size_t rank() { return extents_type::rank(); }
static constexpr size_t rank_dynamic() { return extents_type::rank_dynamic(); }
static constexpr size_type static_extent(size_t r) { return extents_type::static_extent(r); }
constexpr const extents_type& extents() const { return map_.extents(); }
constexpr size_type extent(size_t r) const { return extents().extent(r); }
constexpr size_type size() const;
constexpr const pointer& data() const { return ptr_; }
constexpr const mapping_type& mapping() const { return map_; }
static constexpr bool is_always_unique() {
return mapping_type::is_always_unique();
}
static constexpr bool is_always_contiguous() {
return mapping_type::is_always_contiguous();
}
static constexpr bool is_always_strided() {
return mapping_type::is_always_strided();
}
constexpr bool is_unique() const {
return map_.is_unique();
}
constexpr bool is_contiguous() const {
return map_.is_contiguous();
}
constexpr bool is_strided() const {
return map_.is_strided();
}
constexpr size_type stride(size_t r) const {
return map_.stride(r);
}
private:
// exposition only
accessor_type acc_; // exposition only
mapping_type map_; = pointer(); // exposition only
pointer ptr_ };
template <class ElementType, class... Integrals>
explicit mdspan(ElementType*, Integrals...)
-> see below;
template <class ElementType, class SizeType, size_t N>
(ElementType*, const array<SizeType, N>&)
mdspan-> mdspan<ElementType, dextents<N>>;
template <class ElementType, size_t... ExtentsPack>
(ElementType*, const extents<ExtentsPack...>&)
mdspan-> mdspan<ElementType, extents<ExtentsPack...>>;
template <class ElementType, class MappingType>
(ElementType*, const MappingType&)
mdspan-> mdspan<ElementType, typename MappingType::extents_type,
typename MappingType::layout_type>;
template <class ElementType, class MappingType, class AccessorType>
(ElementType*, const MappingType&, const AccessorType&)
mdspan-> mdspan<ElementType, typename MappingType::extents_type,
typename MappingType::layout_type, AccessorType>;
}
4
mdspan<ElementType, Extents, LayoutPolicy, AccessorPolicy>
is a trivially copyable type if AccessorPolicy
,
LayoutPolicy::mapping_type<Extents>
and
AccessorPolicy::pointer
are trivially copyable types.
5
ElementType
is required to be a complete object type that
is neither an abstract class type nor an array type. If
Extents
is not a specialization of extents
,
then the program is ill-formed. LayoutPolicy
shall meet the
layout mapping policy requirements. AccessorPolicy
shall
meet the accessor policy requirements. If
is_same_v<typename AccessorPolicy::element_type, ElementType>
equals false
, then the program is ill-formed.
22.7.�.1 mdspan
Constructors
[mdspan.mdspan.ctors]
template<class... SizeTypes>
explicit constexpr mdspan(pointer p, SizeTypes... exts);
1 Constraints:
(1.1)
(is_convertible_v<SizeTypes, size_type> && ...)
is true
,
(1.2)
is_constructible_v<extents_type, static_cast<size_type>(SizeTypes)...>
is true
,
(1.3)
is_constructible_v<mapping_type, extents_type>
is
true
, and
(1.4)
is_default_constructible_v<accessor_type>
is
true
.
2
Precondition: [p
,
map_
.required_span_size()
) is an accesible range of
acc_
for the values of map_
and acc_
after the invocation of this
constructor.
3 Effects:
(3.1)
Direct-non-list-initializes ptr_
with
std::move(p)
, and
(3.2)
Direct-non-list-initializes map_
with
extents_type(static_cast<size_type>(std::move(exts))...)
.
template<class SizeType, size_t N>
explicit(N != rank_dynamic())
constexpr mdspan(pointer p, const array<SizeType, N>& exts);
4 Constraints:
(4.1)
is_convertible_v<const SizeType&, size_type>
is
true
,
(4.2)
is_constructible_v<extents_type, const array<SizeType, N>&>
is true
,
(4.3)
is_constructible_v<mapping_type, extents_type>
is
true
, and
(4.4)
is_default_constructible_v<accessor_type>
is
true
.
5
Precondition: [p
,
map_
.required_span_size()
) is an accesible range of
acc_
for the values of map_
and acc_
after the invocation of this
constructor.
6 Effects:
(6.1)
Direct-non-list-initializes ptr_
with
std::move(p)
, and
(6.2)
Direct-non-list-initializes map_
with
extents_type(exts)
.
constexpr mdspan(pointer p, const extents_type& ext);
7 Constraints:
(7.1)
is_constructible_v<mapping_type, const extents_type&>
is true
, and
(7.2)
is_default_constructible_v<accessor_type>
is
true
.
8
Precondition: [p
,
map_
.required_span_size()
) is an accesible range of
acc_
for the values of map_
and acc_
after the invocation of this
constructor.
9 Effects:
(9.1)
Direct-non-list-initializes ptr_
with
std::move(p)
, and
(9.2)
Direct-non-list-initializes map_
with
ext
.
constexpr mdspan(pointer p, const mapping_type& m);
10
Constraints:
is_default_constructible_v<accessor_type>
is
true
.
11
Precondition: [p
,
m.required_span_size()
) is
an accesible range of acc_
for value of
acc_
after the invocation of this constructor.
12 Effects:
(12.1)
Direct-non-list-initializes ptr_
with
std::move(p)
, and
(12.2)
Direct-non-list-initializes map_
with
m
.
constexpr mdspan(pointer p, const mapping_type& m, const accessor_type& a);
13
Precondition: [p
,
m.required_span_size()
) is
an accesible range of a
.
14Effects:
(14.1)
Direct-non-list-initializes ptr_
with
std::move(p)
,
(14.2)
Direct-non-list-initializes map_
with
m
, and
(14.3)
Direct-non-list-initializes acc_
with
a
.
template<class OtherElementType, class OtherExtents,
class OtherLayoutPolicy, class OtherAccessor>
explicit(see below)
constexpr mdspan(const mdspan<OtherElementType, OtherExtents,
>& other); OtherLayoutPolicy, OtherAccessor
15 Mandates:
(15.1)
is_constructible_v<pointer, const OtherAccessor::pointer&>
is true
;
(15.2)
is_constructible_v<extents_type, OtherExtents>
is
true
.
16 Constraints:
(16.1)
is_constructible_v<mapping_type, const OtherLayoutPolicy::template mapping<OtherExtents>&>
is true
;
(16.2)
is_constructible_v<accessor_type, const OtherAccessor&>
is true
; and
17 Preconditions:
(17.1) For
each rank index r
of extents_type
,
static_extent(r) == dynamic_extent || static_extent(r) == other.extent(r)
is true
.
(17.2)
[ptr_
,
map_
.required_span_size()
) is an accesible range of
acc_
for values of ptr_
,
map_
and acc_
after the
invocation of this constructor.
18 Effects:
(18.1)
Direct-non-list-initializes ptr_
with
other.
ptr_
,
(18.2)
Direct-non-list-initializes map_
with
other.
map_
, and
(18.3)
Direct-non-list-initializes acc_
with
other.
acc_
.
19
Remarks: The expression inside explicit
is:
!is_convertible_v<const typename OtherLayoutPolicy::mapping_type&, mapping_type> ||
!is_convertible_v<const OtherAccessorPolicy&, AccessorPolicy>
template <class ElementType, class... Integrals>
explicit mdspan(ElementType*, Integrals...)
-> mdspan<ElementType, dextents<sizeof...(Integrals)>>;
20
Constraints:
(is_convertible_v<Integrals, size_type> && ...)
is true
.
22.7.�.2 mdspan
members
[mdspan.mdspan.members]
template<class... SizeTypes>
constexpr reference operator[](SizeTypes... indices) const;
1 Constraints:
(1.1)
(is_convertible_v<SizeTypes, size_type> && ...)
is true
,
(1.2)
(is_nothrow_constructible_v<size_type, SizeTypes> && ...)
is true
, and
(1.3)
sizeof...(SizeTypes) == rank()
is
true
.
2
Let I
be
static_cast<size_type>(std::move(indices))
.
3
Preconditions: I
is a multidimensional index in
extents()
. [Note: This implies that
map_
(I...) <
map_
.required_span_size()
is true
.— end note];
4
Effects: Equivalent to: return
acc_
.access(
ptr_
,
map_
(I...));
.
template<class SizeType, size_t N>
constexpr reference operator[](const array<SizeType, N>& indices) const;
5 Constraints:
(5.1)
is_convertible_v<const SizeType&, size_type>
is
true
, and
(5.2)
is_nothrow_constructible_v<size_type, const SizeType&>
is true
, and
(5.3)
rank() == N
is true
.
6
Effects: Let P
be the parameter pack such that
is_same_v<make_index_sequence<rank()>, index_sequence<P...>>
is true
.
Equivalent to:
return operator[](static_cast<size_type>(indices[P])...);
constexpr size_type size() const;
7
Precondition: The size of the multidimensional index space
extents()
is a representable value of
size_type
([basic.fundamental]).
8
Returns:
extents().
fwd-prod-of-extents
(rank())
.
22.7.� submdspan [mdspan.submdspan]
1
submdspan
creates an mdspan
with a domain that
is a subset of the input mdspan
’s domain, and a codomain
that is a subset of the input mdspan
’s codomain.
2
The SliceSpecifier
template argument(s) and the
corresponding value(s) of the arguments of submdspan
after
src
determine the subset of src
that the
mdspan
returned by submdspan
views.
namespace std {
// [mdspan.submdspan], submdspan creation
template<class ElementType, class Extents, class LayoutPolicy,
class AccessorPolicy, class... SliceSpecifiers>
constexpr auto submdspan(
const mdspan<ElementType, Extents, LayoutPolicy, AccessorPolicy>& src,
...slices) -> see below;
SliceSpecifiers}
3
Let sub
be the return value of
submdspan(src, slices...)
, let sk be the k-th element of slices
,
and let Sk
be the type of the k-th
element of slices
.
4
Let map-rank
be an
array<size_t, Extents::rank()>
such that for each
rank index j
of Extents
map-rank
[j]
equals:
(4.1)
dynamic_extent
if is_convertible_v<
Sj, size_t>
is true
, or else
(4.2) the
number of Sk with k < j such that
is_convertible_v<
Sk, size_t>
is false
.
5
Let first
and last
be
array<size_t, Extents::rank()>
. For each rank index
r
of src.extents()
, define the values of
first
[r]
and
last
[r]
as follows:
(5.1) if
is_convertible_v<
Sr, size_t>
is true
, then first
[r]
equals sr,
and last
[r]
equals
first
[r]
+ 1;
(5.2)
otherwise, if is_convertible_v<
Sr, tuple<size_t, size_t>>
is true
, then first
[r]
equals get<0>(t)
, and
last
[r]
equals
get<1>(t)
, where t
is the result of
converting sr to
tuple<size_t, size_t>
;
(5.3)
otherwise, first
[r]
equals
0
, and last
[r]
equals
src.extent(r)
.
6
Mandates: For each rank index r
of
src.extents()
only one of the following is
true
: is_convertible_v<
Sk, size_t>
,
is_convertible_v<
Sk, tuple<size_t, size_t>>
,
is_convertible_v<
Sk, full_extent_t>
.
7 Constraints:
(7.1)
sizeof...(slices)
equals
Extents::rank()
,
(7.2) For
each rank index k
of src.extents()
,
is_convertible_v<
Sk, size_t> || is_convertible_v<
Sk, tuple<size_t, size_t>> || is_convertible_v<
Sk, full_extent_t>
is true
.
(7.3)
LayoutPolicy
is layout_left
,
layout_right
, layout_stride
, or an
implementation-defined layout mapping policy type.
[mdspan.layout.reqs] [Note: Implementation and user
defined layout mapping policies could exist, for which taking an
arbitrary submdspan
does not make sense. — end
note];
8
Preconditions: For each rank index r
of
src.extents()
,
0 <=
first
[r] &&
first
[r] <=
last
[r] &&
last
[r] <= src.extent(r)
is true
.
9 Effects:
(9.1)
Direct-non-list-initializes sub.
acc_
with src.accessor()
.
(9.2)
Direct-non-list-initializes sub.
ptr_
with
src.accessor().offset(src.data(), apply(src.mapping(),
first
))
.
10 Postconditions:
(10.1) For
0 ≤ k
<
Extents::rank()
, if
map-rank
[k] != dynamic_extent
is
true
, then
sub.extent(
map-rank
[k])
equals
last
[k] -
first
[k]
.
(10.2) Let
j
be a multidimensional index in
sub.extents()
, let J
be
array{static_cast<size_t>(j)...}
, let I
be array<size_t, decltype(src)::rank()>
such that
I[k] ==
first
[k] + (
map-rank
[k]==dynamic_extent?0:J[
map-rank
[k]])
is true
, then sub[J]
and src[I]
refer to the same element.
(10.3) If
src.is_strided()
is true
, then
sub.is_strided()
is true
.
(10.4) If
src.is_unique()
is true
, then
sub.is_unique()
is true
.
11 Remarks:
(11.1) Let
SubExtents
be a specialization of extents
such
that:
SubExtents::rank()
equals the number of k such that
is_convertible_v<
Sk, size_t>
is false
.
For all rank index k
of Extents
such
that map-rank
[k] != dynamic_extent
is
true
SubExtents::static_extent(
map-rank
[k])
equals:
Extents::static_extent(k)
if
is_convertible_v<
Sk, full_extent_t>
is true
, otherwise
dynamic_extent
.
(11.2) Let
SubLayout
be a type that meets the requirements of layout
mapping policy and:
if LayoutPolicy
is not one of
layout_left
, layout_right
,
layout_stride
, then SubLayout
is
implementation defined, otherwise
if SubExtents::rank()
is 0
, then
SubLayout
is LayoutPolicy
, otherwise
if LayoutPolicy
is layout_left
,
is_convertible_v<
Sk, full_extent_t>
is true
for all k
in the range [0,SubExtents::rank()-1
), and is_convertible_v<
Sk, size_t>
is false
for k
equal
SubExtents::rank()-1
, then SubLayout
is
layout_left
, otherwise
if LayoutPolicy
is layout_right
,
is_convertible_v<
Sk, full_extent_t>
is true
for all k
in the range [Extents::rank()-SubExtents::rank()+1
, Extents::rank()
) and is_convertible_v<
Sk, size_t>
is false
for k
equal
Extents::rank()-SubExtents::rank()
, then
SubLayout
is layout_right
, otherwise
SubLayout
is layout_stride
.
(11.3) The
return type is
mdspan<ElementType, SubExtents, SubLayout, typename Accesssor::offset_policy>
.
[Note: Example of submdspan
use: See code below
- end note]
// Create a mapping
using Extents3D = extents<3, dynamic_extent, 7>;
::template mapping<Extents3D> map_right(10);
layout_right
// Create an mdspan viewing allocated memory
int* ptr = new int[3*8*10];
<int, Extents3D, layout_right> a(ptr, map_right);
mdspan
// Initialize the span
for(int i0 = 0; i0 < a.extent(0); ++i0) {
for(int i1 = 0; i1 < a.extent(1); ++i1) {
for(int i2 = 0; i2 < a.extent(2); ++i2) {
[i0, i1, i2] = 10000*i0 + 100*i1 + i2;
a}
}
}
// Create Subspan
auto a_sub = submdspan(a, 1, tuple{4, 6}, tuple{1, 6});
// Print values of submdspan
for(int i0 = 0; i0 < a_sub.extent(0); ++i0) {
for(int i1 = 0; i1 < a_sub.extent(1); ++i1) {
<< a_sub[i0, i1] << " ";
cout }
<< endl;
cout }
delete [] ptr;
/* Output
10401 10402 10403 10404 10405
10501 10502 10503 10504 10505
*/
There is an mdspan implementation available at https://github.com/kokkos/mdspan/.
The original version of this paper, N4355, predates the “P” naming for papers.
Related papers:
mdspan
codomain concept of span is well-aligned
with this paper.AccessorPolicy
extension point in this
proposal is intended to include such memory access properties.mdspan
Included
proposed modification of span
to better align
span
with mdspan
.span
for the future Proposed
modification of span
mdspan
and
span
mdspan
mdspan
mdspan
and CTAD